
Structs Data Format
Structs data files can contain mnemonic and/or event data. They have two basic forms, archive files, which must

use the XBin format, and buffer files, which may either use the structs DSV format or the XBin format. In either
format, they essentially provide a set of time-key-value mappings. By default keys are interpretted as mnemonics,
unless they start with the dollar sign ($) character, in which case they are interpretted according to the rules of
this document. Currently this is only used to embed event data, but additional features may be added in the
future.

Note that buffer files are only intended to be imported with the STRUCT BUFFER IMPORT API action.

Mnemonics
Mnemonic data may either be denoted by the numeric mnemonic ID, or text mnemonic name. The value will be

interpretted as a mnemonic ID if it is a numeric XBin type, or if it is a string containing only digit characters. If the

ID is used, it must already be associated with an existing mnemonic definition, or an error will be thrown.
Otherwise the text will be parsed as follows:

The parsed mnemonic has five elements: the name, subname, unit, enum map, and description. Only the
name is required. The combination of name, subname, and unit are used to lookup an existing mnemonic. The
comparison is case insensitive and any whitespace is treated as a single underscore. If a matching mnemonic is
not found, a new mnemonic is created automatically. Note that the overall name cannot contain the colon (:),
semicolon (;), dollar sign ($), or number sign (#) characters.

The enum map specifies a one-to-one map of integer values to text labels. This is optional and unlike the other
parameters, not interpretted as a key component of the mnemonic. They will be included in the generated
mnemonic definition if it doesn't exist.

Events
Event operations may also be embedded in structs data files. These are indicated by keys which start with
$event . The supported operations are inserting instant events, opening interval events, and closing interval

events. Events may specify a textual "name" instead of "e_id" , which can be used to lookup a corresponding
event definition ID, or create a new event definition if one does not exist with the provided name. From a user's
perspective, a name can be easier to remember and more descriptive than a numeric e_id . The event's
a_id_start (Start Archive ID) and a_id_end (End Archive ID) will be automatically populated with the Archive ID

of the file being processed.

For the purposes of the following examples, assume a model "m" contains a pipe "p" with 3 event databases, "e",
"ef" (single file per event), and "efs" (multi-file per event).

mnemonic = name [';' subname] [('::' unit-enums) | ('(' unit-enums ')')] ['#' description]
unit-enums = unit [';' enums]
enums = enum | (enums ['|' enum])
enum = [integer '='] label

xbin-format
https://wiki.xina.io/structs-dsv-format
https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-buffer-import
https://wiki.xina.io/link/170#bkmrk-name-type-req-descri-3
https://wiki.xina.io/link/170#bkmrk-name-type-req-descri-3
https://wiki.xina.io/link/80#bkmrk-value-format
https://wiki.xina.io/link/170#bkmrk-mnemonic-definitions

See also the Events and Event Definitions references for the supported fields.

Insert Event Operation

Creates a single event which may be an instant or a completed interval. The database name must correspond to

an event database in the associated pipe. The value must be a JSON object in the standard record format, with

fields appropriate to the specified Events database. The event must omit both the "t_start" and "t_end" values
which will be populated by the time value from the corresponding row in the buffer file. The a_id_start and
a_id_end will be populated from the file's a_id .

Open Interval Event Operation

Creates a single open event (interval with a start time and no end time). Uses the key $event.open.<database
name> . The value must be a single JSON object, defining the content of the event record. The event must omit
both the "t_start" and "t_end" values ("t_start" is populated by the row time, and "t_end" is null for an open
interval). The a_id_start will be populated from the file's a_id .

Close Interval Event Operation

Closes an existing open event. The value must be a single JSON object, which may be used to update the values
of any fields of the event. The object must omit both the "t_start" and "t_end" values ("t_start" cannot be
edited, and "t_end" is populated by the row time). The a_id_end will be populated from the file's a_id .

$event.insert.<database name>

$event.open.<database name>

$event.close.<database name>

Revision #29
Created 9 July 2024 18:02:57 by Nick Dobson
Updated 25 September 2024 19:41:44 by Bradley Tse

https://wiki.xina.io/books/structured-data-standards/page/struct-definitions-reference#bkmrk-events
https://wiki.xina.io/link/170#bkmrk-event-definitions
https://wiki.xina.io/books/structured-data-standards/page/events
https://wiki.xina.io/books/api-reference/page/record-syntax
https://wiki.xina.io/link/170#bkmrk-events

