
Project Organization
Data models must employ certain organizational requirements in XINA to ensure they are interpretted correctly by
struct API calls and front end tools. These apply to both structures within model groups, as well as the
organization of model groups themselves.

Projects / Categories
A project should be defined by a single XINA group at the top level. Each model is then defined by a single XINA
group, which contain all groups and databases associated exclusively with the model. These should either be
defined in the project group, or may be subdivided into category groups.

Image not found or type unknown

A project may use a mix of both approaches or additional levels of subcategories if required, but it is
recommended to either use a flat structure or single level of category groups to avoid confusion. Models may be
referred to by the path relative to their project group (in the above example, model_a would be referenced as
model_a or category_a.model_a , respectively).

Project and category groups may also include additional groups and databases of data or resources which are
not model specific, such as journals or definitions databases. In most cases with standard structures, models will
default to databases or groups within the model, but search for them up the tree if not found. A complete project
group might look like:

Image not found or type unknown

Project Configuration
A group is defined as a project by the xs_struct_project key. The value is a JSON object with the following
definition:

Key Value Default

def_mn relative path to mnemonic definitions
database

def.mn

def_prof path to profile definitions database def.prof

def_plot path to plot definitions database def.plot

A group is defined as a category by the xs_struct_category key. The value is a JSON object extending the
definition of the xs_struct_project key, automatically inheriting any unset values from the project configuration.

All models are required to provide an mn_def , prof_def , and plot_def database. It is strongly recommended
that these be shared by the entire project, and that all models use the same temporal precision, to maximize

intercompatibility between models. Sharing definitions databases does not preclude identifying particular
definitions as relevant only to specific models.

Model Organization
Data within a model falls into four primary classifications:

Telemetry
source data file(s) from data collection point
typically stored in a raw (sometimes binary) format
storage cost is cheap
accessing data means downloading files or most likely requires custom XINA tools
may be divided into multiple data sources (see below)

Viewable Data
extracted from telemetry into XINA database(s)
telemetry is the single source of truth for this data, not intended to be user editable

(except under controlled circumstances with struct API calls)
data is either mnemonic, instant, or interval (see below)
can be accessed and analyzed with built-in XINA tools
storage is expensive
optimizations may be needing depending on project requirements, data volumes

User Metadata
additional data added by users, often directly through the XINA interface
XINA likely the primary repoository for this data
for example, a journal

Definitions / References
may be user entered or defined outside XINA
may exist at model level or above (category/project level)
more formal and restricted than user metadata

Model Configuration
A group is recognized as a model if the xs_struct_model key is set in the group objects. The value is a JSON
object extending the definition of the xs_struct_project key, automatically inheriting any unset values from the
parent project or category configuration.

Origin
Abstractly, a data origin (or simply origin) is a single point of data import to a model. In many cases, a model will
only have a single data origin; for example, if all data is provided directly from a single instrument, or multiple
components are merged into a single data stream through FEDS before import into XINA. In these cases
delineation by origin is not required in model organzation, and should use this pattern:

Image not found or type unknown

However, in environments with multiple import points running in parallel, databases must be designed with
multiple origins.

In this example each source file would need to specify either origin_a or origin_b . Additionally, each origin has
distinct databases for instant, interval, and mnemonic data. This would be required if each data source provided
all three data types. As requirements for instants and intervals are less stringent than mnemonics, in some
circumstances instants and intervals could be considered a single source and populated independently:

Image not found or type unknown

Revision #11
Created 28 July 2022 15:51:05 by Nick Dobson
Updated 17 July 2023 14:09:08 by Nick Dobson

