
Mnemonics
A mnemonic defines a single field of numeric data in a XINA model. A datapoint is a single record of a
mnemonic, consisting of:

time (Unix microseconds)
mnemonic identifier
value (numeric)

In other words, the value of a single mnemonic at a moment in time.

A model has one or more mnemonic databases, containing all of the datapoints associated with the model.

Mnemonic Definitions
All mnemonics are defined in a mnemonic definitions database. It is strongly recommended to use a single
definitions database for an entire project to faciliate comparison of data between models.

A core challenge of working with mnemonics is synchronizing mnemonic definitions from XINA to the point of
data collection. Especially in early test environments, fields may be frequently added or removed on the the fly
and labels may change, but must be consistently associated with a single mnemonic definition. Broadly there are
two approaches to manage this challenge.

The first is user maintained mnemonic definitions. This is recommended for environments without frequent
changes, and ideally one data source. The end user is responsible for ensuring that imported data has matching
mn_id values to mnemonics present in the definitions database. This will typically result in faster imports and

support complex or custom data pipeline solutions.

The second solution is allowing XINA to manage mnemonic definitions. With this approach, data can be imported
with plain text labels and automatically associated with mnemonic definitions if available, or new definitions can
be created on the fly.

Both approaches can be accomplished with the model_mn_import API action, documented here. The details of
the required approach will depend on project requirements.

Fields
Mnemonic ID

Unique numeric ID, assigned by XINA.

Name

Mnemonic name. Conforms to structs naming conventions. Must be unique in combination with subname and
unit.

Subname

Essentially a name suffix.

http://wiki.xina.io/books/api-reference/page/model-actions
https://wiki.xina.io/naming-conventions

Description

Optional plain text mnemonic description.

Unit

Optional (but strongly recommended) measurement unit (for example, V , mA , etc).

Standard Fields

field type description

state model_mn_state current state of mnemonic (active ,
inactive , archived , deprecated)

origins jsonobject map of model(s) to associated origin(s)

full asciivstring(32) the primary database for the mnemonic,
default f8 (may be null)

bin set(asciivstring(32)) the opt-in bin database(s) to include the
mnemonic in

format asciivstring(32) printf-style format to render values

enum jsonobject mapping of permitted text values to
numeric values

labels list(jsonobject) mapping of numeric values or ranges to
labels

aliases set(asciivstring(128)) set of additional names associated with the
mnemonic

meta jsonobject additional metadata as needed

query asciivstring(32) query name for meta-mnemonics (may be
null)

conf jsonobject configuration for meta-mnemonics (may be
null)

Although the mnemonic name is intended to be unique, insertion of a mnemonic with the same name but different
unit will create a new mnemonic definition. This is intended to avoid interruption of data flow, but should be
corrected with the Mnemonic Management tool when possible. The model and origin are populated
automatically for auto-generated mnemonic definitions.

The mnemonic state affects how the mnemonic will be displayed and populated. An inactive mnemonic
indicates data is no longer relevant or actively populated and will be hidden by default. A deprecated mnemonic
extends this concept but will throw errors if additional data points for the mnemonic are imported.

If enum is provided a mnemonic will apply labels to enumerated numeric values, as provided in values . For
example, a 0|1 on|off state could be represented by {"0":"OFF", "1":"ON"} . Values in this map may also be used
to parse imported data.

A mnemonic may specify one or more aliases to indicate additional names that should be included in the single
mnemonic definition. If present, the aliases are referenced at a higher priority than the mnemonic name during
import lookup. For example, a given mnemonic a is erroneously labeled b in some imported data, which
creates a new separate mnemonic definition for b . To correct this, b could be added as an alias for a , and the
b mnemonic could be deprecated. All a and b data from the source telemetry would then correctly be merged

into the a mnemonic.

name , unit , state , enum , models , and aliases may be used during the data import process to validate and
interpret data. Full details of how each field is used is documented with the associated API action.

Mnemonic Databases
Within a model, each data source must have a set of one or more mnemonic databases. Each set should be
contained by a group, which can be configured to define any relationships between the databases. This will
typically include a full database, containing all or delta optimized data (see below for additional information), and
one or more types of bin databases, depending on requirements.

While each data source must have its own mnemonic database(s), it may be beneficial for a single data source to
further subdivide mnemonics into different types of databases for optimization purposes. For example, a model
with a large number of mnemonics that only require single byte precision would see significant performance gains
from separate databases using the int(1) type. In practice this could look like:

Full Database
In most cases, there will be a single primary database containing full mnemonic data (all points from original
telemetry), delta mnemonic data (an optimization option, see below), or a mix of both. Data is stored with a
single data point per row.

A value of null may be used for v to indicate a gap in data, otherwise data will appear visually connected by
default in XINA charts. null may also be appropriate to represent NaN or Inf values, as these cannot be stored
in the database, but the preference to include these as null or omit them altogether may depend on an individual
mnemonic.

For large data sets with infrequent value changes, it may be beneficial to employ a delta mnemonic optimization.
This requires the n field listed above. In this case, a point is only included in the database at the moment the
value for a given mnemonic changes, and the number of points is stored in n . For example, given the set of
points:

t v

0 0

1 0

2 0

3 1

4 1

t v

5 1

6 1

7 2

8 2

9 2

Delta optimization would condense the data to:

t v n

0 0 2

2 0 1

3 1 3

6 1 1

7 2 2

9 2 1

Note the final data point of a data set is always included.

Bin Database(s)
The most common data optimization employed with mnemonics is binning, combining multiple data points over a
fixed time range into a single data point with a min, max, avg, and standard deviation. A model may define one or
more bin databases depending on performance requirements, but four types are supported by default. The time
range of bins is interpretted as [start, end) .

Time Binning

Bins are applied on a fixed time interval for all points in the database (for example, 1 minute or 1 hour).

Standard Fields

field type description required

t instant (matching model
standard)

start time of the bin yes

t_min instant (matching model
standard)

time of first data point in bin yes

t_max instant (matching model
standard)

time of last data point in bin yes

mn_id int(4) unique mnemonic ID yes

n int(4) number of data points in bin yes

avg float(8) average of points in bin yes

min float(8) min of points in bin yes

max float(8) max of points in bin yes

field type description required

med float(8) median of points in bin no

var float(8) variance of points in bin no

std float(8) standard deviation of points in
bin

no

Interval Binning

Bins are based on explicitly defined intervals.

Standard Fields

field type description required

t_start instant(us) start time of the bin yes

t_end instant(us) end time of the bin yes

dur duration(us) duration yes

t_min instant(us) time of first data point in bin yes

t_max instant(us) time of last data point in bin yes

u_id UUID UUID of associated interval yes

p_id int(8) primary ID of associated
interval

yes

s_id int(4) secondary ID of associated
interval

yes

mn_id int(4) unique mnemonic ID yes

n int(4) number of data points in bin yes

avg float(8) average of points in bin yes

min float(8) min of points in bin yes

max float(8) max of points in bin yes

med float(8) median of points in bin no

var float(8) variance of points in bin no

std float(8) standard deviation of points in
bin

no

Revision #20
Created 27 July 2022 18:51:52 by Nick Dobson
Updated 17 July 2024 17:09:52 by Nick Dobson

