
Events
To organize time based data in XINA, we employ events, which come in two forms: instants, referring to a
single moment in time, and intervals, referring to a range of time. The goal of events is to make it easy to find,
compare, and trend data. Each has their own databases and include fields for:

type (indicates how the event should be viewed and interpreted)
UUID (universally unique identifier, generated at the creation of the event)
numeric event ID (meaning can depend on type)
plain text label (up to 128 bytes)
plain text, HTML, or JSON content
optional JSON object metadata

The UUID uniquely identifies an event, and is the only way to permanently, globally specify it. It should be applied
at the time of creation to ensure consistency even if data is reprocessed. The event ID is optional, and can be
used as needed (when not provided it will be zero by default). Its much faster and more reliable to query numbers
than text, so this is the best way to indicate events having commmon meaning.

Event Database
Default Location

<model>.event

<model>.eventf (single file per event)

<model>.eventfs (multi file per event)

Required Fields

field type description

uuid uuid UUID

e_id int(8) event ID

t_start instant(us) start time (inclusive)

t_end instant(us) end time (exclusive)

dur duration(us) t_end - t_start

interval boolean true if event is an interval, false if event
is an instant

open boolean true if event is an open interval, false
otherwise

type struct_event_type event type (see below)

level struct_event_level event level (see below)

label utf8vstring(128) plain text label

content utf8text extended text / CSV / HTML / JSON

field type description

meta jsonobject additional metadata as needed

conf jsonobject additional information specific to type

Note that duration , interval , and open are computed automatically from t_start and t_end and cannot be
provided manually.

Event Types
XINA defines a fixed set of standard event types, each with an associated numeric code. The type is stored as
the code in the database for performance reasons; for practical purposes most actions can use the type name
directly, unless interacting directly with the API.

Standard Types

code name ins int description

0 message ? ? Basic event, IDs
optional, no implicit ID
interpretation

1 marker ? ? Organized event, IDs
imply related events

2 alert ? ? Organized event, level
(severity) required, IDs
imply related events

2000 test ? Discrete test period,
may not overlap other
tests, IDs optional,
unique if used

2001 activity ? Discrete activity period,
may not overlap other
activities, IDs optional,
unique if used

2002 phase ? Discrete phase period,
may not overlap other
phases, IDs optional,
unique if used

3000 data ? ? General purpose data
set

3001 spectrum ? ? General purpose
spectrum data

Additional types will be added in the future as needed, with codes based on this chart:

Standard Type Code Ranges

code ins int description

0-999 ? ? General types for instants and
intervals

1000-1999 ? General types for instants only

2000-2999 ? General types for intervals only

code ins int description

3000-3999 ? ? Data set types for instants and
intervals

4000-4999 ? Data set types for instants only

5000-5999 ? Data set types for intervals only

Data Format
The data event type indicates a basic data set. This is typically used with the single file per event database
structure, in which case the file will contain the data set. For event databases without files, the data is expected to
be stored in the content field. This is only recommended for small datasets (less than 1MB).

Files must be either ASCII or UTF-8 encoded. New lines will be interpretted from either \n or \r\n . The conf
object may define other customization of the format:

Conf Definition

Key Value Default Description

delimiter string auto detect (',' , '\t' , ';') value delimiter

quoteChar character " (double quote character) value quote character

ignoreLines number 0 number of lines to skip before
the header

invalid null , 'NaN' , number null preferred interpretation of
invalid literal

nan null , 'NaN' , number null preferred interpretation of
'Nan' literal

pInfinity null , 'Inf' , number null preferred interpretation of
positive 'Infinity' literal

nInfinity null , 'Inf' , number null preferred interpretation of
negative 'Infinity' literal

utc boolean false if true , interpret all unzoned
timestamps as UTC

Starting after the number provided for ignoreLines , the content must include a header for each column, with a
name and optional unit in parentheses. Special standard unit names may be used to indicate time types, which
will apply different processing to the column:

Unit Description

ts text timestamp, interpretted in local browser timezone (absent
explicit zone)

ts_utc text timestamp, interpretted as UTC timezone (absent explicit
zone)

unix_s Unix time in seconds

unix_ms Unix time in milliseconds

unix_us Unix time in microseconds

Revision #30
Created 27 July 2022 18:13:41 by Nick Dobson
Updated 1 May 2024 13:15:43 by Bradley Tse

