
Structured Data
Standards
XINA standard data structures terms and organizing principles.

Introduction

Data Organization

Data Lifecycle

Mnemonics

Events

Structs Data Format

Structs DSV Format

XBin Format

Struct Extract Interface

Struct Definitions Reference

Name Conventions Reference

Units Reference

Introduction
Although XINA is very flexible and can be configured to meet almost any data organization requirements, we
have defined standard organization principles for common use cases with pre-built front end tooling. By adhering
to these standards projects can quickly leverage built-in XINA front end tools and data processing pipelines, as
well as first class API actions for interacting with data in complex ways. We call this collection of standards
structured data standards, or structs.

These are not hard limitations of the overall XINA system, but serve as our recommended entry point into using
XINA based on past experience, performance benchmarks, and cost/benefit analysis.

Data Organization
Structs XINA groups employ certain organizational requirements to ensure they are interpretted correctly by
structs API calls and front end tools.

Data Models
The primary organizational concept of the struct system is the data model. Abstractly, a data model (or simply
model) is defined as having a set of synchronously relevant data. For example, a project might have a flight
model, ETU model, etc. Models store data in independent databases, and multiple models may import data in
parallel.

Broadly we use time as the primary method to organize and synchronize data within a model. In XINA this is
represented as an 8-byte unsigned integer Unix time with microsecond precision. We use Unix time because it is:

Widely and consistently supported
Time zone independent
Efficiently convertible to other formats and time systems

Other time formats may be available for data export depending on project requirements.

Projects / Categories
Projects and categories provide organization for multiple models. A project is a top-level group containing multiple
models and/or categories, with each category containing multiple models or further categories. Project and
category groups may also include additional groups and databases of data or resources which are not model
specific, such as notebooks or definitions databases. In most cases with standard structures, models will default
to databases or groups within the model, but search for them up the tree if not found. A complete project group
might look like:

Note the definitions groups, which provide context for the data in models. A model is associated with the
definitions defined by its closest ancestor. In this case, "definitions a" apply to models a , b , f , and g ,
"definitions b" to models d and e , "definitions c" to model c , and "definitions d" to models h and i .

In practice it is strongly recommended to use a single definitions group as broadly as possible to
facilitate comparing data. Tools are designed to efficiently compare data (even across models) with the
same set of definitions.

Model Organization
Data within a model falls into four primary classifications:

Telemetry
source data file(s) from data collection point
typically stored in a raw (sometimes binary) format
storage cost is cheap
accessing data means downloading files or most likely requires custom XINA tools
may be divided into multiple pipes (see below)

Viewable Data
extracted from telemetry into XINA database(s)
telemetry is the single source of truth for this data, not intended to be user editable

(except under controlled circumstances with struct API calls)
data is either mnemonic, instant, or interval (see below)
can be accessed and analyzed with built-in XINA tools

storage is expensive
optimizations may be needing depending on project requirements, data volumes

User Metadata
additional data added by users, often directly through the XINA interface
XINA likely the primary repoository for this data
for example, a notebook

Definitions / References
may be user entered or defined outside XINA
may exist at model level or above (category/project level)
more formal and restricted than user metadata

Pipes
Abstractly, a data pipe (or simply pipe) is a single point of data import to a model. In many cases, a model will
only have a single pipe; for example, if all data is provided directly from a single instrument, or multiple
components are merged into a single data stream through FEDS before import into XINA.

However, in environments with multiple import points running in parallel, databases must be designed with
multiple origins.

In this example each source file would need to specify either origin_a or origin_b . Additionally, each origin has
distinct databases for instant, interval, and mnemonic data. This would be required if each data source provided
all three data types. As requirements for instants and intervals are less stringent than mnemonics, in some
circumstances instants and intervals could be considered a single source and populated independently:

Data Lifecycle
The XINA structs mnemonic data lifecycle involves four primary phases:

Source Files
Each pipe maintains a set of source files, containing all data imported into XINA for that pipe.

The primary type of source files are archive source files. Archive files are considered the definitive record of
source data for a range of time for a single pipe. These are stored in the XINA xbin binary file format. These
are imported directly with the STRUCT ARCHIVE IMPORT action. Archive files are mined through the XINA
Structs Mine task into XINA databases in order to be viewed in the XINA client, and are used to generate export
packages.

Alternatively, an pipe may use buffer source files. Buffer files may be imported in a variety of data formats and
are not subject to the same strict requirements as archive files. These may are imported directly with the
STRUCT BUFFER IMPORT action. Mnemonic data from buffer files is loaded into a temporary buffer database
for immediate viewing in the XINA client. Buffer files are archived (merged and converted into archive files)
through the XINA Structs Archive task, which can be run manually or configured to run in regular intervals. This is
the recommended approach for importing mnemonic data when getting started with XINA Structs.

Data Flow
In general, there are three supported approaches for pipe data flow: buffer import, variable time archive import,
and fixed time archive import. While a single pipe can only support one workflow, a model may combine multiple
workflows using multiple pipe.

Buffer Import
The buffer import workflow is the most flexible mnemonic import method. Buffer files do not need to adhere to
strict requirements (aside from conforming to standard accepted file formats). Buffer files for a given pipe may
have duplicated data, overlapping data, and can introduce new mnemonic definitions on demand.

Buffer files are imported with the STRUCT BUFFER IMPORT action. This invokes three effects:

the raw buffer file is parsed, validated, and stored in the model pipe mnemonic buffer file database
new mnemonic definitions are created for any unrecognized mnemonic labels

data is added to the mnemonic buffer database for the associated pipe

No additional data processing occurs as part of this step. XINA models utilizing buffer source files must
implement routine execution of the STRUCT_BUFFER_ARCHIVE asynchronous task (typically every hour) to merge
the files into archive files in a fixed-time archive format, which can then be processed by STRUCT_ARCHIVE_MINE
tasks to fully process data into model standard databases.

Pros

minimal client side configuration required to get started
allows smaller, faster file uploads to view data close to real-time
flexible and responsive to changing environments, mnemonics, requirements

Cons

performance is worse than client side aggregation
not recommended above 1k total data points per second

Struct Archive Task
The XINA Struct Archive task merges and compresses buffer files into archive files. This step is required to
resolve any data discrepancies and ensure data is preserved in accordance with the requirements of archive
files. The task performs the following steps:

load all unprocessed files from the buffer file database
for each time ranges affected by unprocessed files

process each file into processed format
load any existing processed files in those time ranges
merge data from all processed files for time range into single archive file
upload newly processed buffer files
delete unprocessed buffer files
upload merged archive file
run mining task on merged archive file
delete any mnemonic data already present for time range
import mnemonic data generated by mining task

Direct Archive Import
Archive files are imported directly with the STRUCT ARCHIVE IMPORT action.

Pros

much higher performance ceiling than server side aggregation
stringent validation ensures data conforms to standard

Cons

more complex initial setup
mnemonic definitions must be pre-defined and cannot be added on-the-fly
mnemonic definitions need coordination between client and server
changes are more complex and likely involve human interaction

https://wiki.xina.io/struct-definitions-reference#bkmrk-mn-file-buffer
https://wiki.xina.io/struct-definitions-reference#bkmrk-mn-buffer

Fixed-Time Archive Import
With fixed-time archive import each archive has a fixed time range. This is a recommended solution for projects
which generate a persistent data stream (for example, data sources piped through a FEDS server).

Variable-Time Archive Import
With variable-time archive import each archive specifies a custom time range. This is a recommended solution for
projects which generate their own archival equivalent (for example, outputting a discrete data set after running a
script). Because the time ranges are determined by the source data, it is recommended to generate interval
events matching each file as a time range reference.

Source File Formats
Currently there are two natively supported general purpose formats, one using the codes csv / tsv (full

documentation here), and a binary format using the code xbin (full documentation here) Additional formats will
be added in the future, and custom project-specific formats may be added as needed.

Assumptions and Limitations
Each archive source file is considered the single source of truth for all mnemonics, instants, and intervals
for it's associated pipe for its time range. This has the following implications:

Archive files with the same pipe cannot contain overlapping time ranges. If an import operation is
performed with a file violating this constraint the operation will fail and return an error.

Within a single model, each mnemonic may only come from a single pipe. Because mnemonics are not
necessarily strictly associated with models, and the source may vary between models, this cannot be verified on
import and must be verified on the client prior to importing data.

csv-tsv-format-reference
csv-tsv-format-reference
https://wiki.xina.io/xbin-format-reference

Mnemonics
A mnemonic defines a single field of numeric data in a XINA model. A datapoint is a single record of a
mnemonic, consisting of:

time (Unix microseconds)
mnemonic identifier
value (numeric)

In other words, the value of a single mnemonic at a moment in time.

A model has one or more mnemonic databases, containing all of the datapoints associated with the model.

Mnemonic Definitions
All mnemonics are defined in a mnemonic definitions database. It is strongly recommended to use a single
definitions database for an entire project to faciliate comparison of data between models.

A core challenge of working with mnemonics is synchronizing mnemonic definitions from XINA to the point of
data collection. Especially in early test environments, fields may be frequently added or removed on the the fly
and labels may change, but must be consistently associated with a single mnemonic definition. Broadly there are
two approaches to manage this challenge.

The first is user maintained mnemonic definitions. This is recommended for environments without frequent
changes, and ideally one data source. The end user is responsible for ensuring that imported data has matching
mn_id values to mnemonics present in the definitions database. This will typically result in faster imports and

support complex or custom data pipeline solutions.

The second solution is allowing XINA to manage mnemonic definitions. With this approach, data can be imported
with plain text labels and automatically associated with mnemonic definitions if available, or new definitions can
be created on the fly.

Both approaches can be accomplished with the model_mn_import API action, documented here. The details of
the required approach will depend on project requirements.

Fields
Mnemonic ID

Unique numeric ID, assigned by XINA.

Name

Mnemonic name. Conforms to structs naming conventions. Must be unique in combination with subname and
unit.

Subname

Essentially a name suffix.

http://wiki.xina.io/books/api-reference/page/model-actions
https://wiki.xina.io/naming-conventions

Description

Optional plain text mnemonic description.

Unit

Optional (but strongly recommended) measurement unit (for example, V , mA , etc).

Standard Fields

field type description

state model_mn_state current state of mnemonic (active ,
inactive , archived , deprecated)

origins jsonobject map of model(s) to associated origin(s)

full asciivstring(32) the primary database for the mnemonic,
default f8 (may be null)

bin set(asciivstring(32)) the opt-in bin database(s) to include the
mnemonic in

format asciivstring(32) printf-style format to render values

enum jsonobject mapping of permitted text values to
numeric values

labels list(jsonobject) mapping of numeric values or ranges to
labels

aliases set(asciivstring(128)) set of additional names associated with the
mnemonic

meta jsonobject additional metadata as needed

query asciivstring(32) query name for meta-mnemonics (may be
null)

conf jsonobject configuration for meta-mnemonics (may be
null)

Although the mnemonic name is intended to be unique, insertion of a mnemonic with the same name but different
unit will create a new mnemonic definition. This is intended to avoid interruption of data flow, but should be
corrected with the Mnemonic Management tool when possible. The model and origin are populated
automatically for auto-generated mnemonic definitions.

The mnemonic state affects how the mnemonic will be displayed and populated. An inactive mnemonic
indicates data is no longer relevant or actively populated and will be hidden by default. A deprecated mnemonic
extends this concept but will throw errors if additional data points for the mnemonic are imported.

If enum is provided a mnemonic will apply labels to enumerated numeric values, as provided in values . For
example, a 0|1 on|off state could be represented by {"0":"OFF", "1":"ON"} . Values in this map may also be used
to parse imported data.

A mnemonic may specify one or more aliases to indicate additional names that should be included in the single
mnemonic definition. If present, the aliases are referenced at a higher priority than the mnemonic name during
import lookup. For example, a given mnemonic a is erroneously labeled b in some imported data, which
creates a new separate mnemonic definition for b . To correct this, b could be added as an alias for a , and the
b mnemonic could be deprecated. All a and b data from the source telemetry would then correctly be merged

into the a mnemonic.

name , unit , state , enum , models , and aliases may be used during the data import process to validate and
interpret data. Full details of how each field is used is documented with the associated API action.

Mnemonic Databases
Within a model, each data source must have a set of one or more mnemonic databases. Each set should be
contained by a group, which can be configured to define any relationships between the databases. This will
typically include a full database, containing all or delta optimized data (see below for additional information), and
one or more types of bin databases, depending on requirements.

While each data source must have its own mnemonic database(s), it may be beneficial for a single data source to
further subdivide mnemonics into different types of databases for optimization purposes. For example, a model
with a large number of mnemonics that only require single byte precision would see significant performance gains
from separate databases using the int(1) type. In practice this could look like:

Full Database
In most cases, there will be a single primary database containing full mnemonic data (all points from original
telemetry), delta mnemonic data (an optimization option, see below), or a mix of both. Data is stored with a
single data point per row.

A value of null may be used for v to indicate a gap in data, otherwise data will appear visually connected by
default in XINA charts. null may also be appropriate to represent NaN or Inf values, as these cannot be stored
in the database, but the preference to include these as null or omit them altogether may depend on an individual
mnemonic.

For large data sets with infrequent value changes, it may be beneficial to employ a delta mnemonic optimization.
This requires the n field listed above. In this case, a point is only included in the database at the moment the
value for a given mnemonic changes, and the number of points is stored in n . For example, given the set of
points:

t v

0 0

1 0

2 0

3 1

4 1

t v

5 1

6 1

7 2

8 2

9 2

Delta optimization would condense the data to:

t v n

0 0 2

2 0 1

3 1 3

6 1 1

7 2 2

9 2 1

Note the final data point of a data set is always included.

Bin Database(s)
The most common data optimization employed with mnemonics is binning, combining multiple data points over a
fixed time range into a single data point with a min, max, avg, and standard deviation. A model may define one or
more bin databases depending on performance requirements, but four types are supported by default. The time
range of bins is interpretted as [start, end) .

Time Binning

Bins are applied on a fixed time interval for all points in the database (for example, 1 minute or 1 hour).

Standard Fields

field type description required

t instant (matching model
standard)

start time of the bin yes

t_min instant (matching model
standard)

time of first data point in bin yes

t_max instant (matching model
standard)

time of last data point in bin yes

mn_id int(4) unique mnemonic ID yes

n int(4) number of data points in bin yes

avg float(8) average of points in bin yes

min float(8) min of points in bin yes

max float(8) max of points in bin yes

field type description required

med float(8) median of points in bin no

var float(8) variance of points in bin no

std float(8) standard deviation of points in
bin

no

Interval Binning

Bins are based on explicitly defined intervals.

Standard Fields

field type description required

t_start instant(us) start time of the bin yes

t_end instant(us) end time of the bin yes

dur duration(us) duration yes

t_min instant(us) time of first data point in bin yes

t_max instant(us) time of last data point in bin yes

u_id UUID UUID of associated interval yes

p_id int(8) primary ID of associated
interval

yes

s_id int(4) secondary ID of associated
interval

yes

mn_id int(4) unique mnemonic ID yes

n int(4) number of data points in bin yes

avg float(8) average of points in bin yes

min float(8) min of points in bin yes

max float(8) max of points in bin yes

med float(8) median of points in bin no

var float(8) variance of points in bin no

std float(8) standard deviation of points in
bin

no

Events
Events are the primary means of organizing structs data. They have two forms: instants, referring to a single
moment in time, and intervals, referring to a range of time. The goal of events is to make it easy to find,
compare, and trend data.

Fields
Unlike most structs databases, event databases may include as many custom fields as required, so long as they
do not conflict with the required standard fields:

UEID

Universally unique event identifier (UUID). Intended to permanently, globally specify each event. Should be
generated at the creation of the event to ensure consistency even if data is reprocessed.

Event ID

Optional numeric reference to an event definition (also see below). If not provided, defaults to 0 .

Type

Indicates how the event should be viewed and interpreted. The options are defined by XINA.

Level

Indicates how the event should be viewed and interpreted. The options are defined by XINA.

Label

Required plain text description of the event. Limited to to 128 bytes for indexing.

Content

Optional plain text, HTML, or JSON of unlimited length.

Meta

Optional JSON object of arbitrary additional content.

Types
XINA defines a fixed set of standard event types, each with an associated numeric code. The type is stored as
the code in the database for performance reasons; for practical purposes most actions can use the type name
directly, unless interacting directly with the API.

Standard Types

https://wiki.xina.io/link/170#bkmrk-event-definitions

Code Name Ins Int Description

0 message ? ? Basic event, ID optional

1 marker ? ? Organized event, ID
required

2 alert ? ? Organized event, ID
required, level (severity)
required

2000 test ? Discrete test period,
may not overlap other
tests, ID optional

2001 activity ? Discrete activity period,
may not overlap other
activities, ID optional

2002 phase ? Discrete phase period,
may not overlap other
phases, ID optional

2010 filter ? Filter state

3000 data ? ? General purpose data
set

3001 spectrum ? ? General purpose
spectrum data

Additional types will be added in the future as needed, with codes based on this chart:

Standard Type Code Ranges

code ins int description

0-999 ? ? General types for instants and
intervals

1000-1999 ? General types for instants only

2000-2999 ? General types for intervals only

3000-3999 ? ? Data set types for instants and
intervals

4000-4999 ? Data set types for instants only

5000-5999 ? Data set types for intervals only

Definitions
As with mnemonics, events may be identified with event definitions. However, unlike mnemonics, not every event
requires a definition. The event ID field associates an event with an event definition. Each event ID is associated
with a unique name, describing the definition. These work similarly to mnemonic names for purposes for definition
creation. If an event is inserted with an unrecognized name, a new definition will be created for that name and
assigned a new event ID.

Context

https://wiki.xina.io/link/170#bkmrk-event-definitions

An event database may either be a child of a model or pipe group. A model event database is essentially like any

other XINA database, but with support for the STRUCT EVENT API actions.

Pipe event databases are more restrictive. The events must be embedded in the data set of the pipe, and cannot
be inserted manually. Each event is associated with the archive in which it starts. Events may cross archive
boundaries by initially being inserted as open events (having a start time but no end time) and later using the
$event.close operation to assign an end time. Additionally, pipe event databases have an associated event

change database to track manually applied updates outside of the source data set. This allows changes to be
preserved if data is remined from the archive files. The intention is that these accurately reflect the archived data,
so fields must opt-in to being editable by this operation.

Data Formats
The data event type indicates a basic data set. This is typically used with the single file per event database
structure, in which case the file will contain the data set. For event databases without files, the data is expected to
be stored in the content field. This is only recommended for small datasets (less than 1MB).

Files must be either ASCII or UTF-8 encoded. New lines will be interpretted from either \n or \r\n . The conf
object may define other customization of the format:

Conf Definition

Key Value Default Description

delimiter string auto detect (',' , '\t' , ';') value delimiter

quoteChar character " (double quote character) value quote character

ignoreLines number 0 number of lines to skip before
the header

invalid null , 'NaN' , number null preferred interpretation of
invalid literal

nan null , 'NaN' , number null preferred interpretation of
'Nan' literal

pInfinity null , 'Inf' , number null preferred interpretation of
positive 'Infinity' literal

nInfinity null , 'Inf' , number null preferred interpretation of
negative 'Infinity' literal

utc boolean false if true , interpret all unzoned
timestamps as UTC

Starting after the number provided for ignoreLines , the content must include a header for each column, with a
name and optional unit in parentheses. Special standard unit names may be used to indicate time types, which
will apply different processing to the column:

Unit Description

ts text timestamp, interpretted in local browser timezone (absent
explicit zone)

ts_utc text timestamp, interpretted as UTC timezone (absent explicit
zone)

unix_s Unix time in seconds

https://wiki.xina.io/link/72#bkmrk-struct-event

Unit Description

unix_ms Unix time in milliseconds

unix_us Unix time in microseconds

Structs Data Format
Structs data files can contain mnemonic and/or event data. They have two basic forms, archive files, which must

use the XBin format, and buffer files, which may either use the structs DSV format or the XBin format. In either
format, they essentially provide a set of time-key-value mappings. By default keys are interpretted as mnemonics,
unless they start with the dollar sign ($) character, in which case they are interpretted according to the rules of
this document. Currently this is only used to embed event data, but additional features may be added in the
future.

Note that buffer files are only intended to be imported with the STRUCT BUFFER IMPORT API action.

Mnemonics
Mnemonic data may either be denoted by the numeric mnemonic ID, or text mnemonic name. The value will be

interpretted as a mnemonic ID if it is a numeric XBin type, or if it is a string containing only digit characters. If the

ID is used, it must already be associated with an existing mnemonic definition, or an error will be thrown.
Otherwise the text will be parsed as follows:

The parsed mnemonic has five elements: the name, subname, unit, enum map, and description. Only the
name is required. The combination of name, subname, and unit are used to lookup an existing mnemonic. The
comparison is case insensitive and any whitespace is treated as a single underscore. If a matching mnemonic is
not found, a new mnemonic is created automatically. Note that the overall name cannot contain the colon (:),
semicolon (;), dollar sign ($), or number sign (#) characters.

The enum map specifies a one-to-one map of integer values to text labels. This is optional and unlike the other
parameters, not interpretted as a key component of the mnemonic. They will be included in the generated
mnemonic definition if it doesn't exist.

Events
Event operations may also be embedded in structs data files. These are indicated by keys which start with
$event . The supported operations are inserting instant events, opening interval events, and closing interval

events. Events may specify a textual "name" instead of "e_id" , which can be used to lookup a corresponding
event definition ID, or create a new event definition if one does not exist with the provided name. From a user's
perspective, a name can be easier to remember and more descriptive than a numeric e_id . The event's
a_id_start (Start Archive ID) and a_id_end (End Archive ID) will be automatically populated with the Archive ID

of the file being processed.

For the purposes of the following examples, assume a model "m" contains a pipe "p" with 3 event databases, "e",
"ef" (single file per event), and "efs" (multi-file per event).

mnemonic = name [';' subname] [('::' unit-enums) | ('(' unit-enums ')')] ['#' description]
unit-enums = unit [';' enums]
enums = enum | (enums ['|' enum])
enum = [integer '='] label

xbin-format
https://wiki.xina.io/structs-dsv-format
https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-buffer-import
https://wiki.xina.io/link/170#bkmrk-name-type-req-descri-3
https://wiki.xina.io/link/170#bkmrk-name-type-req-descri-3
https://wiki.xina.io/link/80#bkmrk-value-format
https://wiki.xina.io/link/170#bkmrk-mnemonic-definitions

See also the Events and Event Definitions references for the supported fields.

Insert Event Operation

Creates a single event which may be an instant or a completed interval. The database name must correspond to

an event database in the associated pipe. The value must be a JSON object in the standard record format, with

fields appropriate to the specified Events database. The event must omit both the "t_start" and "t_end" values
which will be populated by the time value from the corresponding row in the buffer file. The a_id_start and
a_id_end will be populated from the file's a_id .

Open Interval Event Operation

Creates a single open event (interval with a start time and no end time). Uses the key $event.open.<database
name> . The value must be a single JSON object, defining the content of the event record. The event must omit
both the "t_start" and "t_end" values ("t_start" is populated by the row time, and "t_end" is null for an open
interval). The a_id_start will be populated from the file's a_id .

Close Interval Event Operation

Closes an existing open event. The value must be a single JSON object, which may be used to update the values
of any fields of the event. The object must omit both the "t_start" and "t_end" values ("t_start" cannot be
edited, and "t_end" is populated by the row time). The a_id_end will be populated from the file's a_id .

$event.insert.<database name>

$event.open.<database name>

$event.close.<database name>

https://wiki.xina.io/books/structured-data-standards/page/struct-definitions-reference#bkmrk-events
https://wiki.xina.io/link/170#bkmrk-event-definitions
https://wiki.xina.io/books/structured-data-standards/page/events
https://wiki.xina.io/books/api-reference/page/record-syntax
https://wiki.xina.io/link/170#bkmrk-events

Structs DSV Format
The XINA Structs DSV (delimiter separated values) format provides a standard delimited text data file format.

This is recommended for data files attached to events, and forms the basis for the structs buffer file format.

Files have certain standard requirements:

Must be UTF-8 encoded
New lines will be interpretted from either \n or \r\n
Blank lines will be ignored
Lines starting with the # character are treated as comments and ignored

The conf object may define other customization of the format:

Key Value Default Description

delimiter string ',' (comma character) value delimiter

quote_char character " (double quote character) value quote character

ignore_lines number 0 lines to ignore at the start of the
file

zone string UTC time zone to use if not provided

values JSON object preferred interpretation of string
literals (see below)

It is strongly recommended to include a unique appropriately generated 128-bit UUID in the standard 36

character format as a comment in the first processed line of each file. (If ignore_lines > 0 , this would be the first
line after that number of lines.)

There are two format modes for DSV files: the row format, in which each line contains a time, label, and value,
and the column format, in which each row contains a time and one or more values. The first processed
uncommented line will be intepretted as the column header, which is used to determine the file format. The file
will be treated as row mode if it contains exactly three columns, with each having one of the reserved column
names in the table below.

Name Description Alternate Names

t Unix time or ISO8601 zoned timestamp ts, time, timestamp, datetime, unix_time,
unix, utc

k key key, m, m_id, mn, mn_id, mnemonic,
mnemonic_id, n, name

v value (numeric, empty, or null) val, value

The header is used to determine the order of the columns.

For example (whitespace added for clarity, not required):

https://wiki.xina.io/structs-buffer-format
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Otherwise, the file will be interpretted as the column format, where the first must be the time column, followed by
a column for each mnemonic. The column headers must specify the mnemonic name or ID for each column.

For example, the following is equivalent to the above example (whitespace added for clarity, not required):

Time Parsing
The mode of time processing is determined by the value for t in conf . The auto mode attempts to interpret the
most likely formatting for the timestamp. If the value is an integer or floating point format, it will be interpretted as
a Unix timestamp, with precision based on these rules:

t > 1e16 : error, value above typical range
t > 1e14 : microseconds
t > 1e11 : milliseconds
t > 1e8 : seconds
t <= 1e8 : error, value below typical range

Otherwise it will be interpretted as a zoned ISO8601 timestamp. If t is set explicitly in the configuration the time
will always be interpretted in that context. The ISO timestamp may use the standard format:

2023-05-31T17:55:07.000

Or condensed format:

123e4567-e89b-12d3-a456-426614174000
t , k , v
0 , v_mon , 1
0 , i_mon , 5
1 , t_mon , 100
2 , v_mon , 1.1
2 , i_mon , 4
3 , t_mon , null
4 , v_mon , 1.2
4 , i_mon , 3
5 , t_mon , 101

123e4567-e89b-12d3-a456-426614174000
t , v_mon , i_mon , t_mon
0 , 1 , 5 ,
1 , , , 100
2 , 1.1 , 4 ,
3 , , , null
4 , 1.2 , 3 ,
5 , , , 101

20230531T175507.000

If the zone property provided in the configuration, the timestamps do not require a zone. Otherwise they must
include an explicit zone.

Non-Numeric Values
Values which are non-numeric may be ignored, treated as null , or mapped to explicit values using the values
property of the conf object. Ignored values are treated by XINA as though they do not exist in the file. null
values are stored as an actual data point in the XINA database, but with the value null instead of a numeric
value. (This is primarily useful to create a visual gap in plots.)

The following values are ignored by default (note, case-insensitive and whitespace agnostic):

"" (empty string)
"nv" (no value, ITOS)
"na"
"n/a"

The following values are interpretted as null by default (note, case-insensitive and whitespace agnostic):

"null"
"nil"
"none"
"nan"
"inf"
"+inf"
"-inf"
"infinity"
"+infinity"
"-infinity"

Custom value interpretations may be specified in the values object as either "ignore" , null , or a numeric value.
For example:

Any text value which does not include a custom or default mapping will cause an error. The defaults may be
extended in the future.

{
 "?": "ignore",
 "notta": null,
 "onetwothree": 123
}

XBin Format
The XBin (XINA Binary) format provides a XINA standard binary format for time based data files. It uses the file
extension xbin .

The xbin format organizes key-value data by time. The data content is a series of rows in ascending time order,
with each row having a single microsecond precision Unix time, unique within the file.

Segment Format
XBin data is often encoded in segments, which are defined by an initial 1, 2, or 4 byte unsigned integer length,
then that number of bytes. These are referred to in this document as:

seg1 (up to 255 bytes)
seg2 (up to 65,535 bytes)
seg4 (up to 2,147,483,647 bytes)

If the length value of a segment is zero there is no following data and the value is considered empty.

Examples
The string "foo" has a 3 byte UTF-8 encoding: 0x66 , 0x6f , 0x6f .

As a seg1, this is encoded with a total of 4 bytes (the initial byte containing the length, 3):

0x03 0x66 0x6f 0x6f

As a seg2, 5 bytes:

0x00 0x03 0x66 0x6f 0x6f

And as a seg4, 7 bytes:

0x00 0x00 0x00 0x03 0x66 0x6f 0x6f

Value Format
Each value starts with a 1 byte unsigned integer indicating the value type, followed by additional byte(s)
containing the value itself, as applicable.

Value Type Definition

Code Value Length (bytes) Description

0 null 0 literal null / empty string

1 ref dict index 1 index 0 to 255 (see below)

Code Value Length (bytes) Description

2 ref dict index 2 index 256 to 65,535

3 ref dict index 4 index 65,536 to 2,147,483,647

4 true 0 boolean literal

5 false 0 boolean literal

6 int1 1 1 byte signed integer

7 int2 2 2 byte signed integer

8 int4 4 4 byte signed integer

9 int8 8 8 byte signed integer

10 float4 4 4 byte floating point

11 float8 8 8 byte floating point

12 string1 variable seg1 UTF-8 encoded string

13 string2 variable seg2 UTF-8 encoded string

14 string4 variable seg4 UTF-8 encoded string

15 json1 variable seg1 UTF-8 encoded JSON

16 json2 variable seg2 UTF-8 encoded JSON

17 json4 variable seg4 UTF-8 encoded JSON

18 jsonarray1 variable seg1 UTF-8 encoded JSON
array

19 jsonarray2 variable seg2 UTF-8 encoded JSON
array

20 jsonarray4 variable seg4 UTF-8 encoded JSON
array

21 jsonobject1 variable seg1 UTF-8 encoded JSON
object

22 jsonobject2 variable seg2 UTF-8 encoded JSON
object

23 jsonobject4 variable seg4 UTF-8 encoded JSON
object

24 bytes1 variable seg1 raw byte array

25 bytes2 variable seg2 raw byte array

26 bytes4 variable seg4 raw byte array

27 xstring1 variable seg1 xstring

28 xstring2 variable seg2 xstring

29 xstring4 variable seg4 xstring

30 xjsonarray1 variable seg1 xjson array

31 xjsonarray2 variable seg2 xjson array

32 xjsonarray4 variable seg4 xjson array

33 xjsonobject1 variable seg1 xjson object

Code Value Length (bytes) Description

34 xjsonobject2 variable seg2 xjson object

35 xjsonobject4 variable seg4 xjson object

36 - 255 unusued, reserved

XString Format
The xstring value type allows chaining mutliple encoded values to be interpretted as a string. The xstring
segment length must be the total number of bytes of all encoded values in the string.

Note that although any data type may be included in an xstring, the exact string representation of certain values
may vary depending on the decoding environment (specifically, the formatting of floating point values) and thus it
is not recommended to include them in xstring values. JSON values will be converted to their minimal string
representation. Byte arrays will be converted to a hex string. Null values will be treated as an empty string.

XJSON Array Format
The xjsonarray value type allows chaining mutliple encoded values to be interpretted as a JSON array. The
xjsonarray segment length must be the total number of bytes of all encoded values in the array.

XJSON Object Format
The xjsonobject value type allows chaining mutliple encoded values to be interpretted as a JSON object. Each
pair of values in the list is interpretted as a key-value pair. The xjsonobject segment length must be the total
number of bytes of all encoded key-value pairs in the object. Note that key values must resolve to a string,
xstring, number, boolean, or null (which will be interpretted as an empty string key).

Examples
Null Value:

Code Content (0 bytes)

0x00

300 (as 2 byte integer):

Code Content (2 bytes)

0x07 0x01 0x2c

0.24 (as 8 byte float):

Code Content (8 bytes)

0x0b 0x3f 0xce 0xb8 0x51 0xEB 0x85 0x1E 0xb8

"foo" (as string1):

Code Content (4 bytes)

0x0c 0x03 0x66 0x6f 0x6f

{"foo":"bar"} (as json1):

Code Content (14 bytes)

0x0f 0x0d 0x7b 0x22 0x66 0x6f 0x6f 0x22 0x3a 0x22
0x62 0x61 0x72 0x22 0x7d

"foo123" (as xstring1, split as string1 "foo" and int1 123):

Code Content (7 bytes)

0x1b [0x06](total length) [0x03 0x66 0x6f 0x6f]("foo") [0x04
0x7b](123)

Reference Dictionary
The xbin format provides user-managed compression through the reference dictionary. It can contain up to the 4
byte signed integer index space (2,147,483,647). The order of values affects the compression ratio; index 0-255
can be represented with a single byte, 256-65,535 with 2 bytes, and above requires 4 bytes.

Binary File Format

UUID
The file starts with a 16 byte binary encoded UUID. This is intended to uniquely identify the file, but the exact
implementation and usage beyond this is not explicitly defined as part of the format definition. For XINA purposes
two xbin files with the same UUID would be expected to be identical.

Header
A value which must either be null or a jsonobject1 , jsonobject2 , or jsonobject4 . This is currently a placeholder
with no defined parameters.

Reference Dict
A seg4 containing 0 to 2,147,483,647 encoded values, which may be referenced by zero based index with the
reference dict index value types.

Rows
Each row contains:

8 byte signed integer containing Unix time with microsecond precision
seg4 of row data, containing

header, single value which must either be null or a jsonobject1 , jsonobject2 , or jsonobject4
one or more key,value pairs

The row header is currently a placeholder with no defined parameters.

Example File

Given a data set with UUID 9462ef87-f232-4694-922c-12b93c95e27c:

t voltage current label

0 5 10 "foo"

1 "bar"

2 5 null

A corresponding xbin file containing the same data would be:

UUID (16 bytes)

0x94 0x62 0xef 0x87 0xf2 0x32 0x46 0x94 0x92 0x2c 0x12 0xb9 0x3c 0x95 0xe2 0x7c

Header (1 byte)

0x00 (null, 1 byte)

Reference Dict, three values, "voltage", "current", "label" (29 bytes)

0x00 0x00 0x00 0x19 (seg4 length, 25)

0x0a 0x07 0x76 0x6f 0x6c 0x74 0x61 0x67 0x65 ("voltage", 9 bytes)

0x0a 0x07 0x63 0x75 0x72 0x72 0x65 0x6e 0x74 ("current", 9 bytes)

0x0a 0x05 0x6c 0x61 0x62 0x65 0x6c ("label", 7 bytes)

Row t0 (22 bytes)

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 (time, 0, 8 bytes)

0x00 0x00 0x00 0x0e (row length, 15, 4 bytes)

0x00 (header, null, 1 byte)

0x01 0x00 (reference to index 0, "voltage", 2 bytes)

0xff (type code reference to index 0, 5, 1 byte)

0x01 0x01 (reference to index 1, "current", 2 bytes)

0x04 0x0a (integer value 10, 2 bytes)

0x01 0x02 (reference to index 2, "label", 2 bytes)

0x0a 0x03 0x66 0x6f 0x6f (string "foo", 5 bytes)

Row t1 (20 bytes)

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 (time, 1, 8 bytes)

0x00 0x00 0x00 0x08 (row length, 8, 4 bytes)

0x00 (header, null, 1 byte)

0x01 0x02 (reference to index 2, "label", 2 bytes)

0x0a 0x03 0x62 0x61 0x72 (string "bar", 5 bytes)

Row t2 (19 bytes)

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 (time, 2, 8 bytes)

0x00 0x00 0x00 0x0e (row length, 15, 4 bytes)

0x00 (header, null, 1 byte)

0x01 0x00 (reference to index 0, "voltage", 2 bytes)

0x00 (type code reference to index 0, 5, 1 byte)

0x01 0x01 (reference to index 1, "current", 2 bytes)

0x00 (null, 1 byte)

Struct Extract Interface

For projects that use packet file archives, XINA Mining (struct_mining) and Export (struct_export) delegates the
decoding and conversion of mnemonic data to a mission specific tool, which we will reference as struct_extract .
This tool should implement the following interface for integration with XINA.

Environment

The app should be runnable on Ubuntu 22.04.
Any required environment setup will be performed on a per project basis.

Input

struct_extract should accept a single argument which is the path to a JSON file. The JSON file defines the
parameters needed to extract the requested mnemonic data. Project specific keys can be added as needed. The
following table defines the standard parameters:

Key Required Description

dir ? The path to the dir containing the archive
file and any ancillary files needed for
processing

dest ? The path to the dir that all output (e.g.
xbin file) should be placed

mission ? TBC: The mission which may be needed to
determine how the archive file is processed

model ? TBC: The mission's model which may be
needed to determine how the archive file is
processed

raw The mnemonic IDs of the mnemonics that
should be extracted and output,
unconverted

eng The mnemonic IDs of the mnemonics that
should be extracted and output with the
engineering conversion applied

sci The mnemonic IDs of the mnemonics that
should be extracted and output with the
science conversion applied

Warning: This page is a Work In Progress

Note: If raw , eng , or sci are not provided, all mnemonics should be extracted as
"science".

https://wiki.xina.io/books/utilities/page/xina-struct-mine
https://wiki.xina.io/books/utilities/page/xina-struct-export

Key Required Description

time_mode For projects that support it, defines which
time source should be used when
timestamping the mnemonic data. Either
"pkt" or "grt" (ground receipt time). If not
provided, it should default to packet time.

Example JSON configuration file:

Output

The output of the tool should be a xbin file. XINA's tools will then process the xbin file to produce the required
mine or export products.

For mission specific data, struct_extract should output using one of the following options [TBD]:

Self generate the data file and corresponding XINA JSON import file. XINA will take care of importing
the data.
Output the data into the xbin file. XINA will take care of the rest.

Return Codes

Return codes are used by the struct_extract app to return final execution status to the XINA processing.

Name Code Description

Success 0 Execution was successful

Error 1 Generic error code for unsuccessful
execution. A more specific error code
should be preferred over this one.

Finished with warnings 3 Execution finished but there were warnings.
The log file should be examined for more
info

{
}

https://wiki.xina.io/books/structured-data-standards/page/xbin-format

Struct Definitions Reference
This page provides a reference for the purpose and structure of all structs standard groups and databases.

Structs groups and databases are marked with a JSON object using the key xs_struct . This contains three
standard parameters:

"type" - the name of the type of struct element as a string
"v" - the current version this instance of the specified type as a string
"conf" - optional JSON object, format depends on type

Versioning is tied to the version number of the XINA server. Typically server updates will automatically apply
needed changes to all structs schema elements, incrementing their "v" property to the latest version. In the
event an upgrade cannot be performed the version will not be changed.

Groups
Note that group versioning is used to manage databases required within groups.

Project
Top level struct group. All struct groups and databases must be decendants of a project to be recognized. Name
and label are customizable.

Created with the STRUCT CREATE PROJECT action.

Struct Parameters

Parameter Value

type "project"

Group Parameters

Parameter Value

name *

label *

Category
Mid-level struct group for organization. Must be a child of a project or category group. Name and label are
customizable.

Created with the STRUCT CREATE CATEGORY action.

Struct Parameters

https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-create-projec
https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-create-catego

Parameter Value

type "category"

Group Parameters

Parameter Value

name *

label *

Model
Group for which all data is locally co-relevant. Must be a child of either a project or category group. Name and
label are customizable.

Created with the STRUCT CREATE MODEL action.

Struct Parameters

Parameter Value

type "model"

Group Parameters

Parameter Value

name *

label *

Pipe
Group for all data from a single pipe. Must be the child of a model group. Name and label are customizable.

Created with the STRUCT CREATE PIPE action.

Struct Parameters

Parameter Value Default

type "pipe"

Conf Parameters

Parameter Value Default

discrete boolean false

buffer boolean false

variable boolean false

condense boolean false

https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-create-model
https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-create-pipe

Parameter Value Default

duration archive length in minutes 60

partition {"from": <y0>, "to": <y1>}

Group Parameters

Parameter Value

name *

label *

Notes

If discrete is true , mnemonic data is not considered persistent between archives, and open/close interval
operations are not supported.

If buffer is true , the mn_buffer database will be generated, and the pipe will be included in automated archive

tasks. Otherwise, the STRUCT BUFFER IMPORT action will not be supported.

If variable is true , mnemonic and event databases in the pipe will include the archive ID field (a_id). If buffer
is true , variable must be false (since buffer-generated archives cannot be variable).

duration specifies the archive length in minutes, if variable is false. This cannot be changed. The default is 60
minutes (1 hour). A shorter window may be appropriate for very high data volumes. The maximum is 1440 (24
hours), and the value must be evenly divisible into 1440.

Changelog

11.0.0 (planned)

renamed from origin to pipe

Definitions
Group containing definitions databases.

Struct Parameters

Parameter Value

type "def"

Group Parameters

Parameter Value

name "def"

label "Definitions"

Changelog

11.0.0 (planned)

https://wiki.xina.io/books/api-reference/page/struct-actions#bkmrk-struct-buffer-import

add filter definitions database

Task
Group containing task tracking databases. Must be a child of a pipe group.

Struct Parameters

Parameter Value

type "task"

Group Parameters

Parameter Value

name "task"

label "Task"

Mnemonic
Group containing mnemonic data databases. Must be a child of a pipe group.

Struct Parameters

Parameter Value

type "mn"

Group Parameters

Parameter Value

name "mn"

label "Mnemonic"

Mnemonic Bin
Group containing binned mnemonic data databases. Must be a child of a mnemonic group.

Struct Parameters

Parameter Value

type "mn_bin"

Group Parameters

Parameter Value

name "bin"

Parameter Value

label "Bin"

Databases
Structs databases typically specify a set of required fields, and may permit the inclusion of additional custom
fields. Changes to the spec involving fields will usually be treated as minor version changes, though they may
require manual user correction if an added field conflicts with a custom field already present in a particular
database instance.

Note that fields marked as virtual are calculated from the values of other field(s) and cannot be populated or
edited manually.

Definitions
All definitions databases must be direct children of a definitions group, and all definitions groups must contain one
of each definition database.

Diagram Definitions
Holds diagram definitions. The diagram itself is in an attached SVG file.

Struct Parameters

Parameter Value

type "def_diagram"

Database Parameters

Parameter Value

name "diagram"

label "Diagram"

format "{name}"

order (name , desc)

singular "diagram"

Fields

Name Type Req Description

name utf8vstring(128) ? unique conf name

desc utf8text plain text description

file_name utf8filename ? file name

conf jsonobject diagram configuration

Name Type Req Description

meta jsonobject additional metadata as needed

Changelog

11.0.0

order changed to (name , asc)
added desc field

Event Definitions
Holds event definitions, specifying how they are displayed, interpretted and processed. Filter Definition fields are
defined in the conf field.

Struct Parameters

Parameter Value

type "def_event"

Database Parameters

Parameter Value

name "event"

label "Event"

format "{name}"

order (name , asc)

singular "event definition"

Fields

Name Type Req Description

e_id int(4) ? unique ID

name utf8vstring(128) ? unique name

desc utf8text plain text description

meta jsonobject additional arbitrary metadata

conf jsonobject configuration for pseudo-events

aliases set(utf8string) alternative name(s)

ext_id asciivstring(64) external ID

Filter conf jsonobject

Name Type Req Description

type utf8vstring(128) ? Must have a value of "filter"

Name Type Req Description

condition utf8text ? filter condition expression

t_start_offset duration(us) start time offset (0 if not
provided)

t_end_offset duration(us) end time offset (0 if not
provided)

models set(asciistring) Models that the filter will apply
to

Changelog

11.2.0

added Filter conf specification (no structural change)

11.0.0

added aliases field
added ext_id field
removed type field
changed e_id type from int(8) to int(4)

Mnemonic Definitions
Holds mnemonic definitions, specifying how they are displayed, interpretted and processed.

Struct Parameters

Parameter Value

type "def_mn"

Database Parameters

Parameter Value

name "mn"

label "Mnemonic"

format "{name} ({unit})"

order (name , asc)

singular "mnemonic definition"

Fields

Name Type Req Description

mn_id int(4) ? unique mnemonic ID

name utf8vstring(128) ? unique mnemonic name

subname utf8vstring(32) mnemonic sub-name

Name Type Req Description

desc utf8text plain text mnemonic description

unit utf8vstring(32) measurement unit (for example,
"V" , "mA")

state struct_mn_state ? current state of mnemonic

pipes jsonobject ? map of model(s) to associated
pipe(s)

full asciivstring(32) the primary database for the
mnemonic, default f8

bin set(asciistring) the opt-in bin database(s) to
include the mnemonic in

format asciivstring(32) printf-style format to render
values

enums jsonobject mapping of permitted text
values to numeric values

labels list(jsonobject) mapping of numeric values or
ranges to labels

aliases set(utf8string) set of additional names
associated with the mnemonic

meta jsonobject additional metadata as needed

query asciivstring(32) query name for pseudo-
mnemonics

conf jsonobject configuration for pseudo-
mnemonics

ext_id asciistring external ID

Changelog

11.0.0

added subname field
added ext_id field
rename origins field to pipes

1.0.0

enum changed to enums since "enum" is often a reserved keyword
meas field removed (measure now assumed from unit)

Mnemonic Tracking
Used for tracking mnemonic selection activity. Although this is not strictly a definitions database, it is tightly
coupled to the mnemonic definitions database, and is thus defined in the definitions context.

Struct Parameters

Parameter Value

type "def_mn_track"

Database Parameters

Parameter Value

name "mn_track"

label "Mnemonic Tracking"

format "{t} {mn_id} {user}"

order (name , asc)

singular "mnemonic definition"

Fields

Name Type Req Description

t instant(us) ? time of selection

mn_id int(4) ? mnemonic ID selected

user user_id ? user taking action

mns set(int(4)) other mnemonic ID(s) selected

models set(asciistring) model(s) in current context

Changelog

11.0.0 (planned)

rename mn_ids to mns
order changed to (t , desc)
format changed to "{t} {mn_id} {user}"

Nominal Definitions
Holds mnemonic nominal range definitions.

Struct Parameters

Parameter Value

type "def_nominal"

Database Parameters

Parameter Value

name "nominal"

label "Nominal"

format "{mn_id} {color} ({min}, {max}) {label}"

order (mn_id , asc), (label , asc)

singular "nominal definition"

Fields

Name Type Req Description

unid uuid ? unique nominal range ID

mn_id int(4) ? unique mnemonic ID

label utf8vstring(128) ? nominal range label

desc utf8text plain text nominal range
description

color struct_nominal_color range color indicator

min float(8) min value for the range

max float(8) max value for the range

models set(asciistring) models for which this range
should apply (all if null)

meta jsonobject additional metadata as needed

Notes

The struct_nominal_color type is an enum of green (0), yellow (1), and red (2).

Changelog

11.2.0

added "meta" field

11.0.0

renamed "nominal_id" to "unid"

Plot Configuration Definitions
Holds mnemonic plot configuration definitions.

Struct Parameters

Parameter Value

type "def_plot"

Database Parameters

Parameter Value

name "plot"

label "Plot Conf"

format "{name}"

order (name , asc)

singular "plot configuration"

Fields

Name Type Req Description

name utf8vstring(128) ? unique conf name

desc utf8text plain text conf description

plot_conf struct_plot_conf ? configuration

models set(asciistring) models for which this conf
should apply (any if null)

Changelog

11.0.0

renamed field conf to plot_conf (to match profile definition)
changed type of plot_conf from jsonobject to struct_plot_conf

Profile Definitions
Holds mnemonic profile definitions.

Struct Parameters

Parameter Value

type "def_profile"

Database Parameters

Parameter Value

name "profile"

label "Profile"

format "{name}"

order (name , asc)

singular "profile"

Fields

Name Type Req Description

name utf8vstring(128) ? unique profile name

desc utf8text plain text profile description

models set(asciistring) models for which this conf
should apply (all if null)

data_conf struct_data_conf ? profile data configuration

plot_conf struct_plot_conf profile plot configuration. If not
provided, defaults to 1
mnemonic per plot, 1 plot per
page.

Name Type Req Description

auto_confs list(struct_auto_conf) automation configuration

struct_data_conf jsonobject

Name Type Req Description

ids utf8text CSV range list of mn_id s e.g.
"1,2-10,100" or ext_id

formatted string e.g. "@[1,4-
8,12,100-200]sci;@[2,3]raw"

filter jsonarray of filter jsonobject s List of filters to apply. Each filter
object may reference an
existing filter by name using the
filter key, or directly provide a

filter definition (the type and
models fields are ignored).

limit boolean If True , generate the Limit
Report. Defaults to False .

pkt boolean If True , export using Packet
Time instead of Ground Receipt
Time. Defaults to False .
Ignored if the archives only
contain 1 time source.

join boolean If True , the data file will be
formatted with 1 unique time
per row, and 1 mnemonic per
column. Defaults to False .

fill boolean If True and join is True ,
empty cells will be populated
with the most recent value.
Defaults to False .

dis boolean If True , each mnemonic will
also be exported using the
Discrete conversion, if
available. Defaults to False .

columns jsonobject Defines which columns are
included in the data file.

columns jsonobject

Name Type Req Description

date_utc boolean

ts_utc_iso boolean

ts_utc_excel boolean

ts_utc_excel_ms boolean

ts_utc_doy boolean

t_utc_unix_s boolean

t_utc_unix_ms boolean

t_utc_unix_us boolean

https://wiki.xina.io/link/170#bkmrk-filter-conf-jsonobje

Name Type Req Description

date_tai boolean

ts_tai_iso boolean

ts_tai_doy boolean

t_tai_unix_s boolean

t_tai_unix_ms boolean

t_tai_unix_us boolean

t_tai_tai_s boolean

t_tai_tai_ms boolean

t_tai_tai_us boolean

t_rel_s boolean

t_rel_ms boolean

t_rel_us boolean

name boolean

unit boolean

plot_conf jsonobject

See Export Plot Format

struct_auto_conf jsonobject

Note: The auto_confs field is a list of these described JSON objects.

Name Type Req Description

daily boolean If True , the Profile will be
exported once per day.
Defaults to False .

mine boolean If True , the Profile will be
exported during the Mining
Task when any of the defined
intervals are processed.

users set(utf8vstring(128)) The list of NASA AUIDs to
notify via email when the Daily
Profile Export is generated

Notes

Requires review before use.

Changelog

11.0.0

added auto_conf
renamed field data to data_conf

https://wiki.xina.io/books/oci-user-guide/page/export-plot-configuration-json-format

renamed field plot to plot_conf
changed type of plot_conf from jsonobject to struct_plot_conf
changed type of data_conf from jsonobject to struct_data_conf

Trend Definitions
Holds mnemonic trend definitions.

Struct Parameters

Parameter Value

type "def_trend"

Database Parameters

Parameter Value

name "trend"

format "Trend"

order (name , asc)

singular "trend definition"

Fields

Name Type Req Description

name utf8vstring(128) ? unique trend name

desc utf8text plain text trend description

profiles set(utf8string) ? profile name(s) to include in
trend

models set(asciistring) models for which this trend
should apply (any if null)

trend_conf struct_trend_conf trend configuration

plot_conf struct_plot_conf overrides Profile plot
configurations

auto_conf struct_auto_conf automated generation
configuration

struct_trend_conf jsonobject

Name Type Req Description

bin_size int(4) The bin size in minutes to use
when trending time ranges

bin_count int(4) Multiplier of the bin_size to use
when trending time ranges. The
actual trended bin size in
minutes is bin_size *
bin_count .

Name Type Req Description

t array of time range JSON
objects

List of JSON objects describing
time ranges to trend e.g.
{"start": "2021-06-

30T00:00:00Z", "end": "2021-
07-21T00:00:00Z" }

intervals array of interval JSON objects List of JSON objects describing
Event Intervals to trend

disable_filter boolean If True , do not use any filtered
data. Defaults to False .

struct_plot_conf jsonobject

Allows the Trend Definition to override a Profile's plot configuration. In the below example, FLT_CRIT_TEMPS is a
profile name. The plot configuration is the same format as the Profile's plot configuration.

struct_auto_conf jsonobject

Name Type Req Description

daily boolean If True , the Trend will be
generated once per day.
Defaults to False .

mine boolean If True , the Trend will be
generated during the Mining
Task when either the Time
Range or Interval condition is
satisfied.

users set(utf8vstring(128)) The list of NASA AUIDs to
notify via email when the Daily
Trend is generated

Changelog

{
 "FLT_CRIT_TEMPS": {
 "pages": [
 {
 "plots": [
 {
 "title": "Chamber Pressure",
 "mnemonics": [
 "oci.gse.ocl_pc.Pressure.hk.Chamber"
]
 }
]
 },
 ...

11.2.0

added models field
added trend_conf field
added auto_conf field
removed intervals field

11.0.0

initial release

Files

Archive
Contains all archive files for a pipe. Must be a child of a pipe group.

Struct Parameters

Parameter Value

type "file_archive"

Database Parameters

Parameter Value

name "archive"

label "Archive"

format "{t_start} {t_end}"

singular "archive file"

Fields

Name Type Req Description

a_id int(4) ? archive ID

ufid uuid ? file UUID

t_start instant(us) ? start time of the time range that
the file covers

t_end instant(us) ? end time of the time range that
the file covers, not inclusive

dur duration(us) ? virtual t_end - t_start

t_min instant(us) ? time of first data in file

t_max instant(us) ? time of last data in file

file_name utf8filename ? archive file name

meta jsonobject additional metadata as needed

Name Type Req Description

format asciivstring(32) file format: xbin or xpf ,
where xpf is a zipped dir
(default xbin)

conf jsonobject configuration for format as
needed

Changelog

11.0.0

changed type from "mn_file_archive" to "file_archive"
renamed uuid to ufid

Buffer
Contains all buffer files for a pipe. Must be a child of a pipe group.

Struct Parameters

Parameter Value

type "file_buffer"

Database Parameters

Parameter Value

name "buffer"

label "Buffer"

format "{file_name}"

singular "buffer file"

Fields

Name Type Req Description

ufid uuid ? file UUID

file_name utf8filename ? buffer file name

t_min instant(us) ? time of first data in file

t_max instant(us) ? time of last data in file

dur duration(us) ? virtual t_max - t_min

state struct_buffer_state ? buffer file state

flag struct_buffer_flag buffer file flag

meta jsonobject additional metadata as needed

format asciivstring(32) buffer file format (default "csv"
)

Name Type Req Description

conf jsonobject configuration for format as
needed

Notes

The state field may be one of four values:

PENDING - the file data is present in the mnemonic buffer database but has not been processed
further
ARCHIVED - the file contents have been distributed to the appropriate archive file(s)
DEPRECATED - the file is preserved but no longer included in archive files

The flag field may be one of two values:

DEPRECATE - the file is queued for deprecation
RESTORE - the file is queued for restoration
DELETE - the file is queued for deletion

Changelog

11.0.0

changed type from "mn_file_buffer" to "file_buffer"
renamed uuid to ufid
removed PROCESSED state

CFT
Current filter table for a pipe. Stores a file for each archive containing the state of each filter at the end of the
archive. Only created in pipes where discrete is false .

Struct Parameters

Parameter Value

type "file_cft"

Database Parameters

Parameter Value

name "cft"

label "CFT"

format "{file_name}"

singular "CFT file"

Fields

Name Type Req Description

a_id int(4) ? archive ID

Name Type Req Description

ufid uuid ? file UUID

file_name utf8filename ? CVT file name

format asciivstring(32) CVT file format (default "csv")

conf jsonobject configuration for format as
needed

Changelog

11.0.0

initial release

CVT
Current value table for a pipe. Stores a file for each archive containing the values for each mnemonic at the end
of the archive. Only created in pipes where discrete is false .

Struct Parameters

Parameter Value

type "file_cvt"

Database Parameters

Parameter Value

name "cvt"

label "CVT"

format "{file_name}"

singular "CVT file"

Fields

Name Type Req Description

a_id int(4) ? archive ID

ufid uuid ? file UUID

file_name utf8filename ? CVT file name

meta jsonobject additional metadata as needed

format asciivstring(32) CVT file format (default "csv")

conf jsonobject configuration for format as
needed

Changelog

11.0.0

initial release

Package
Stores generated export packages. Child of a model group.

Struct Parameters

Parameter Value

type "file_package"

Database Parameters

Parameter Value

name "package"

label "Package"

format "{file_name}"

singular "package file"

Fields

Name Type Req Description

t_start instant(us) ? start time

t_end instant(us) ? end time

a_id int(4) archive ID (if generated
automatically)

ueid UUID UEID, if time range from event

label utf8vstring(128) ? package label

file_name utf8filename ? package file name

data_conf struct_data_conf ? data configuration

plot_conf struct_plot_conf plot configuration

auto_conf struct_auto_conf automation configuration

profile utf8vstring(128) profile name, if profile used

profile_version int(4) profile version, if profile used

meta jsonobject additional metadata as needed

Changelog

11.0.0

initial release

Events

Event databases come in three forms, simple events, single file per event, and multiple files per event.

Event
Each record is a single event. May be a child of either a model or pipe group.

Struct Parameters

Parameter Value

type "event"

Database Parameters

Parameter Value

name * (default "event")

label * (default "Event")

format * (default "{t_start} {event_id} {label}")

order * (default (t_start , desc), (event_id , asc))

singular * (default "event")

Fields

Name Type Req Virtual Description

ueid uuid ? event UUID

e_id int(4) ? event ID (default to 0 if
not provided)

a_id int(4) ? archive ID (only present
if child of a pipe group)

t_start instant(us) ? start time

t_end instant(us) end time, not inclusive (if
null , event is an open

interval)

dur duration(us) ? ? duration in
microseconds (null if
open)

interval boolean ? ? t_start != t_end

open boolean ? ? t_end is null

type struct_event_type ? event type (default to
message if not

provided)

level struct_event_level ? event level (default to
none if not provided)

label utf8vstring(128) ? plain text label

content utf8text extended event content

meta jsonobject additional metadata as
needed

https://wiki.xina.io/link/74#bkmrk-types

Name Type Req Virtual Description

conf jsonobject configuration for specific
event types

Notes

Virtual fields are calculated from other fields and cannot be populated manually.

Changelog

11.0.0

changed uuid to ueid
changed e_id type from int(8) to int(4)
removed name field
added a_id field (when child of pipe group)

1.0.2

corrected t_end and dur as not required

1.0.1

corrected name as not required

1.0.0

pid (primary ID) changed to e_id (event ID) to avoid confusion
sid removed (additional IDs may be added as needed)
int changed to interval (int is commonly reserved keyword)
dur , interval , and open are now derived fields from t_start and t_end

added struct_event_type and struct_event_level data types
added name as event definition association

Event File
Uses same structure as event database, with one additional field.

Database Parameters

Parameter Value

name * (default "eventf")

label * (default "Event File")

singular * (default "event file")

Name Type Req Description

file_name utf8filename ? file name

Event Files

Uses same structure as event database, but with a child file database, allowing each event to contain zero or
more files.

Database Parameters

Parameter Value

name * (default "eventfs")

label * (default "Event Files")

singular * (default "event files")

Event Update
Captures updates to events as records.

Struct Parameters

Parameter Value

type "event_update"

Database Parameters

Parameter Value

name "{name}_update")

label "{label} Update"

format "{t_start} {ueid} {label}")

order (t , desc)

singular "event change"

Fields

Name Type Req Description

t instant(us) ? event change time

ueid uuid ? event UUID

update jsonobject ? field(s) to update

Changelog

11.0.0

initial release

Mnemonics
Databases containing mnemonic data. Unless otherwise indicated, mnemonic databases can be configured with
a partitioning system which subdivides the tables internally into UTC calendar months. This is beneficial for

selective mnemonic data repopulation, since each month can be instantly erased before being regenerated, and
doesn't require downtime of the entire dataset. At creation time a start and end year must be specified, and
partitions will be created for each month in that range. Data with timestamps outside the range will be stored in
either a pre-range or post-range partition as applicable.

Mn Buffer
Each record is a single mnemonic data point. Holds data imported through the buffer pipeline. Unlike other
mnemonic databases, may contain duplicate data points.

This database does not hold data indefinitely. The automated archive pipeline will remove data as it is archived
and mined into the primary mnemonic databases.

Struct Parameters

Parameter Value

type "mn_buffer"

Database Parameters

Parameter Value

name "buffer"

label "Buffer"

format "{t} {mn_id} {v}"

singular "mnemonic buffer datapoint"

Fields

Name Type Req Description

t instant(us) ? time

mn_id int(4) ? unique mnemonic ID

v {conf.type} value

Mn Full
Each record is a single mnemonic data point. The data type for mnemonic values is configurable, and determines
the database name. By default the mnemonic data group will contain a full float(8) database.

Struct Parameters

Parameter Value

type "mn_full"

Conf Parameters

Parameter Value Default

type "int(1)" , "int(2)" , "int(4)" , "int(8)" ,
"float(4)" , or "float(8)"

"float(8)"

Database Parameters

Parameter Value

name "i1" , "i2" , "i4" , "i8" , "f4" , or "f8"

label "Full <conf.type>"

format "{t} {mn_id} {v}"

singular "mnemonic datapoint"

Fields

Name Type Req Description

a_id int(4) ? archive ID

t instant(us) ? time

mn_id int(4) ? unique mnemonic ID

v {conf.type} value

Changelog

11.0.0

added a_id

Mn Delta
An optimized mnemonic storage solution with each record representing one or more mnemonic data points, by
only including points where the mnemonic value actually changes. The value data type is customizable, as with
the Mn Full database. By default the mnemonic data group will contain a delta float(8) database.

Struct Parameters

Parameter Value

type "mn_delta"

Conf Parameters

Parameter Value Default

type "int(1)" , "int(2)" , "int(4)" , "int(8)" ,
"float(4)" , or "float(8)"

"float(8)"

Database Parameters

Parameter Value

name "di1" , "di2" , "di4" , "di8" , "df4" , or "df8"

Parameter Value

label "Delta {conf.type}"

format "{t} {mn_id} {v} ({n})"

singular "mnemonic delta datapoint"

Fields

Name Type Req Description

a_id int(4) ? archive ID

t instant(us) ? time

mn_id int(4) ? unique mnemonic ID

v {conf.type} value

n int(4) ? number of datapoints included
in this point

Changelog

11.0.0

added a_id

Mn Bin Time
Contains mnemonic data binned on fixed time intervals. By default these will be created for 1 minute ("t60") and
10 minute ("t600") bin sizes.

Struct Parameters

Parameter Value

type "mn_bin_time"

Conf Parameters

Parameter Value

t bin size in seconds

Database Parameters

Parameter Value

name "t<conf.t>"

label "Time (<conf.t>s)"

format "{t} {mn_id} {avg} ({min}, {max})"

singular "mnemonic bin"

Fields

Name Type Req Description

a_id int(4) ? archive ID

t instant(us) ? start time of the bin

mn_id int(4) ? unique mnemonic ID

t_min instant(us) ? time of first datapoint

t_max instant(us) ? time of last datapoint

n int(4) ? number of datapoints in bin

avg float(8) ? average

min float(8) ? min

max float(8) ? max

std float(8) ? sample standard deviation

Changelog

11.0.0

added a_id field
removed med and var fields

Mn Bin Interval
Contains mnemonic data binned by interval events.

Struct Parameters

Parameter Value

type "mn_bin_interval"

Database Parameters

Parameter Value

name "interval"

label "Interval"

format "{t} {e_id} {mn_id} {avg} ({min}, {max})"

singular "mnemonic bin"

Fields

Name Type Req Description

a_id int(4) ? archive ID

ueid uuid ?

e_id int(8) ?

t_start instant(us) ? start time

Name Type Req Description

t_end instant(us) ? end time

mn_id int(4) ? unique mnemonic ID

t_min instant(us) ? time of first datapoint

t_max instant(us) ? time of last datapoint

n int(4) ? number of datapoints in bin

avg float(8) ? average

min float(8) ? min

max float(8) ? max

std float(8) sample standard deviation

Changelog

11.0.0

added a_id field
renamed field uuid to ueid
removed med and var fields

Mn Bin Edge
Contains mnemonic data binned on archive boundaries and cross-archive interval event boundaries. Used to
generate interval bins efficiently for cross-archive interval events. Only created in pipes where discrete is false .

Struct Parameters

Parameter Value

type "mn_bin_edge"

Database Parameters

Parameter Value

name "edge"

label "Edge"

format "{t_start} - {t_end} {mn_id} {avg} ({min}, {max})"

singular "mnemonic bin"

Fields

Name Type Req Description

a_id int(4) ? archive ID

t_start instant(us) ? start time

t_end instant(us) ? end time

Name Type Req Description

mn_id int(4) ? unique mnemonic ID

t_min instant(us) ? time of first datapoint

t_max instant(us) ? time of last datapoint

n int(4) ? number of datapoints in bin

avg float(8) ? average

min float(8) ? min

max float(8) ? max

std float(8) ? sample standard deviation

Changelog

11.0.0

initial release

Tasks
Store logs and associated files for data processing tasks.

Condense
Each record logs a single execution of a condense task.

Struct Parameters

Parameter Value

type task_condense

Database Parameters

Parameter Value

name "condense"

label "Condense"

format "{task_id} {t}"

singular "condense task"

Fields

Name Type Req Description

task_id task_id ? unique task ID

t instant(us) ? time when task submitted

meta jsonobject additional metadata as needed

Name Type Req Description

conf jsonobject task configuration

condensed list(jsonobject) buffer file(s) condensed

Mine
Each record logs a single execution of a mine task.

Struct Parameters

Parameter Value

type task_mine

Database Parameters

Parameter Value

name "mine"

label "Mine"

format "{task_id} {t_start}"

singular "mine task"

Fields

Name Type Req Description

task_id task_id ? unique task ID

t instant(us) ? time when task submitted

ufid uuid ? source archive file UUID

t_start instant(us) ? source archive file start time

t_end instant(us) ? source archive file end time

meta jsonobject additional metadata as needed

conf jsonobject task configuration

Changelog

11.0.0

renamed uuid to ufid

Archive
Each record logs a single execution of an archive task.

Struct Parameters

Parameter Value

type task_archive

Database Parameters

Parameter Value

name "archive"

label "Archive"

format "{task_id} {t}"

singular "archive task"

Fields

Name Type Req Description

task_id task_id ? unique task ID

t instant(us) ? time when task submitted

meta jsonobject additional metadata as needed

conf jsonobject task configuration

archives list(jsonobject) archives updated

archived list(jsonobject) buffer file(s) archived

restored list(jsonobject) buffer file(s) restored

deprecated list(jsonobject) buffer file(s) deprecated

deleted list(jsonobject) buffer file(s) deleted

Spectra
The spectra definition is a property for event databases.

Property Value Req Description

tabs array of tab conf(s) custom tabs for UI

presearch array of presearch confs custom pre-search components
for UI

filters array of filter confs

grouping array of field name(s)

charts charts conf ?

tables array of table conf

query query conf

labels labels conf

Spectra Tab Conf

Configuration for a spectra search tab. This may be a string , referencing the name of a custom tab
implementation, or an object with a "type" property specifying a tab type and additional properties applicable for
that type. Currently there are no custom tab types, but they may be added in the future.

Spectra Database Tab

Under Construction

The database tab employs a record search for a separate target database of any type, and a solution for
converting a selection from the target database to the spectra database.

Property Value Req Description

type "database" ? tab type name

database database specifier ? target database specifier

map see below ? solution to map target selection
to spectra selection

The "map" property may be a string , array of strings , or object .

If a string , the value must be the name of a custom selection function (none currently exist, they may be added
in the future).

Spectra Presearch Conf

Specifies a set of components to display before the main spectra search component.

Spectra Field Presearch

Specifies a standalone component to search a particular field.

Property Value Req Description

type "field" ? presearch type name

field field specifier ?

options see below options for search dropdown

Spectra Filters Conf

Specifies filters / badges for spectra search.

Property Value Req Description

name string ? system name for filter

label string display label (uses name if
absent)

badge string badge label (uses name if
absent)

desc string description for badge / filter
tooltip

color string color code or CSS class

Property Value Req Description

e expression ? expression to apply for filter

Spectra Charts Conf

Specifies options for each spectra chart.

Property Value Req Description

summary spectra chart conf ? summary chart conf

spectra spectra chart conf ? spectra chart conf

Spectra Chart Conf

Specifies options for a single spectra chart.

Property Value Req Description

x string[] ? x axis options

y string[] ? y axis options

tooltip string record format string

Spectra Tables Conf

Under Construction

Spectra Query Conf

Under Construction

Spectra Labels Conf

Labels are specified as an object mapping standard label values to custom values. These will be defined as
needed.

Name Conventions Reference
Structs definition names have certain requirements and optional conventions, unless otherwise indicated.

Names are limited to 128 characters and may not include the following reserved characters:

& (ampersand)
! (excalamation point)
? (question mark)
$ (dollar sign)
: (colon)
; (semicolon)
(number symbol)
* (asteriks)
@ (at symbol)
, (comma)
((open parentheses)
) (close parentheses)
{ (open brace)
} (close brace)

In cases where names are used by API actions to lookup definitions, the @ character may be used to indicate
an external ID instead of a plain name.

For matching purposes names are case insensitive and normalized with any leading/trailing whitespace
removed and any internal whitespace represented by a single underscore character. For example:

XINA tools will interpret the period character (.) to indicate a tree structure relationship, and brackets ([]) to
indicate an array of values. This is entirely presentational, not functional.

For example, the set of names:

Would be displayed as:

foo
bar
baz

bit
arr[]

"v_mon" = "V Mon" = " V MON "

foo.bar
foo.baz.bit
foo.arr[0]
foo.arr[1]
foo.arr[2]

arr[0]
arr[1]
arr[2]

This is not required but highly recommended to improve organization in large namespaces.

Units Reference

