
Getting Started
General XINA information and concepts.

Introduction and Ecosystem

Terms and Concepts

Importing Data

Data Types

Sandbox Quick Start Guide

Spectra Quickstart

Introduction and Ecosystem
XINA is an integrated data management platform, developed at NASA GSFC. XINA is provided as a managed
service hosted on Amazon Web Services.

Overview
The XINA platform provides five primary functions:

Structured Database Storage (MySQL on AWS RDS)
File Storage (AWS S3)
Task Management (XINA Run on AWS EC2, XINA Lambda on AWS Lambda)
Web Client (XINA Web, Angular)
Direct API Access (XINA Tunnel)

XINA supports Launchpad and NAMS integration for user management and authentication.

Limitations
XINA is not a single standalone application, and cannot currently be installed locally. We provide the software as
a service through a NASA AWS account integration. Specific AWS requirements and costs will vary depending
on project parameters.

XINA is not recommended as a gold copy for data storage. Although AWS cloud services are highly reliable and
XINA is often used as a valuable backup tool, a full gold copy should always be kept onsite.

XINA System Components
The XINA platform is composed of several interconnected components and applications:

XINA Server
The XINA server is the core application of the XINA platform. It manages all incoming and outgoing XINA data
and provides API access. The server is built on a MySQL database backend and uses the AWS S3 service for

large file storage.

XINA Web
XINA Web (formerly XINA Online) is the primary XINA front-end application, written in TypeScript with Google's
Angular web application platform. Authentication is integrated with NASA Launchpad and managed through
NAMS.

XINA Tunnel
The XINA Tunnel utility is a Java application intended to facilitate communication with the XINA API. The tunnel
connects directly to the XINA server and manages connection security and authentication. It then opens a local

webserver to which client applications can connect and communicate with the core XINA server. Full reference is

available here.

XINA Import
The XINA Import utility is a Java application to simplify importing data to the XINA server by importing XINA API

actions from JSON files. Full reference is available here.

XINA Run

XINA Run is a Java application for managing and executing asynchronous tasks though the XINA platform. Full

reference is available here.

XINA Lambda

XINA Lambda is an integrated service for executing asynchronous tasks from the AWS Lambda platform. Full

reference is available here.

http://wiki.xina.io/books/utilities/page/xina-tunnel
http://wiki.xina.io/books/utilities/page/xina-tunnel
http://wiki.xina.io/books/utilities/page/xina-import
http://wiki.xina.io/books/task-management/page/xina-run
http://wiki.xina.io/books/task-management/page/xina-run
http://wiki.xina.io/books/task-management/page/lambda-tasks
http://wiki.xina.io/books/task-management/page/lambda-tasks

Terms and Concepts
Database
Databases are the core data storage structures in XINA. A database essentially defines a MySQL table, with
additional features managed by the XINA server system.

Each database is defined by a set of fields, which specify the columns of the table. Fields are primarily defined
by:

Name, unique to the field in the database
Static data type
Whether a value must be provided by each record (an empty value being null)

A single unit of data in a database is a record, corresponding to a row of the table. Each record contains a value
for each field of the database.

Structural database changes (adding / changing / removing fields) are very slow (hours to days for very large
databases) so initial time investment to optimize database requirements is worthwhile.

Group
Databases in XINA are organized into a heirarchical structure of groups, which can each contain any number of
groups and databases. For example:

The model group contains a journal database and data group
The data group contains a housekeeping database and science database

Image not found or type unknown

A dot notation is used to reference groups and databases. For example, moma.data.science refers to the science
database in the above configuration.

Importing Data
There are several approaches for importing data into XINA, but for most projects we recommend the XINA
Import utility.

XINA Import reads XINA API calls from JSON files and passes them to the XINA server. Each JSON file
corresponds to a single API action, but may be paired with additional files of other types depending on the
content.

For example, to upload some housekeeping data from a CSV requires two files. First, the JSON file:

The CSV file then looks like:

A couple notes on these:

The "line" property in the JSON file must exactly match the new line character(s) in the CSV file. You
can use "\r\n" if you prefer, but either way we recommend explicitly using one or the other when you
write the files, as a general "print line" may use different output depending on the platform.
The "{local}" in the "$object_id" property is a macro used by the XINA Import application to look for
the CSV file in the same location as the JSON file. We recommend using this and keeping the files in
the same location. If you need to separate them you can use a full path instead, but this is more fragile
if folder organization needs to be changed.
For best performance we recommend paging the CSV files so that each is 50MB or less.
If you need to represent an empty value, you can either omit a data point or use "NULL" (without
quotes). ("NaN" and "Infinity" are not supported at the database level.)

While this CSV approach is recommended for large data sets, data can alternatively be embedded directly in
JSON files. For example, a file to insert a new instant might look like:

{
 "action": "load",
 "database": "demo.model.data.hk.full",
 "columns": true,
 "delimit": ",",
 "line": "\n",
 "$object_id": "{local}/hk.csv"
}

t,name,value
1602086313288000,SCAN_INDEX(Step),-1
1602086313288000,MO1_LD1_CURR(mA),0
1602086313288000,MO1_LD2_CURR(mA),0
1602086313288000,MO1_CASE_TEC(C),21.739
...

The full API reference can be found here.

{
 "action": "insert",
 "database": "demo.model.data.ins",
 "records": [
 {
 "u_id": "58ea870a-52c3-33c7-b858-c20795ec3301",
 "p_id": 0,
 "s_id": 0,
 "type": 20,
 "level": 0,
 "t": 1606333792000000,
 "label": "SPECTRA_Startf-0_Stopf-1k",
 "content": "some additional text here...",
 "meta": {
 "Resolution Bandwidth": 2.07014,
 "Stop Frequency": 1000,
 "Average Factor": 30,
 "Start Frequency": 0
 }
 }
]
}

http://wiki.xina.io/books/api-reference

Data Types
XINA has a fixed set of data types which apply to attributes and fields. They are intended to provide consistent
behavior across MySQL, Java, and JavaScript data types.

Numeric Types
Type Java MySQL JavaScript Notes

int(1) byte tinyint number signed 1 byte integer, -2
7 to 27-1

int(2) short smallint number signed 2 byte integer, -2
15 to 215-1

int(4) int int number signed 4 byte integer, -2
31 to 231-1

int(8) long bigint number signed 8 byte integer, -2
63 to 263-1 ??

float(4) float float number IEEE 754 4 byte floating
point

float(8) double double number IEEE 754 8 byte floating
point

boolean boolean tinyint boolean MySQL treats 0 as
false , non-zero as
true

Character Types
Character data types offer two encoding options:

UTF-8 - default encoding, variable length, 1 to 4 bytes per character
ASCII - subset of UTF-8, fixed length, 1 byte per character

Two SQL types:

char(n) - data stored in the table, fastest search and index, uses fixed amount of space per row (n *
max_bytes_per_character)
varchar(n) - data stored in the table, fast search and index, uses variable amount of space per row (up
to n * max_bytes_per_character)
text - data stored outside the table, slower search and index, uses only as much space as needed

Two general types:

?? JavaScript number is 8 byte float, so only -253 to 253-1 is stored with exact precision

string - text is normalized before insertion
leading and trailing whitespace is trimmed
all internal whitespace is reduced to a single space character

text - text is inserted as provided

Type Java MySQL JavaScript Notes

utf8string(n) string char(n) string n up to 128, uses n*4
bytes, normalized

utf8vstring(n) string varchar(n) string n up to 128, uses up to
n*4 bytes, normalized

utf8string string mediumtext string up to 224 bytes,
normalized

utf8text string mediumtext string up to 224 bytes, not
normalized

asciistring(n) string char(n) string n up to 256, uses n
bytes, normalized

asciivstring(n) string varchar(n) string n up to 256, uses up to n
bytes, normalized

asciistring string mediumtext string up to 224 bytes,
normalized

asciitext string mediumtext string up to 224 bytes, not
normalized

Temporal Types
Temporal data types store time data. There are two categories of temporal types:

instants - identify specific moment in time, independent of time zone
stored numerically in the database in milliseconds
datetime and date use Unix epoch
datetime and date comparable in database
date + time = datetime

typically displayed in local time zone in front-end applications
timestamps - identify specific formatted time without time zone consideration (thus local)

stored as ISO 8601 formatted string in database
localdate and localdatetime comparable in database
CONCAT(localdate, 'T', localtime) = localdatetime

Type Java MySQL JavaScript Notes

datetime DateTime bigint date instant with millisecond
precision, as Unix time

Note, all string operations are case-insensitive by default. This can be overridden with the

collate expression by specifying a binary collation.

https://wiki.xina.io/api-syntax-ex.md#collate

Type Java MySQL JavaScript Notes

date XDate bigint date instant at start of date
UTC, as Unix time

time LocalTime int number length of time up to
23:59:59.999, as
millisecond count

localdatetime LocalDateTime char(24) string full timestamp without
timezone, stored as
string

localdate LocalDate char(10) string date without timezone,
stored as string

localtime LocalTime char(12) string length of time up to
23:59:59.999, as string

JSON Types
JSON data types store JSON data directly in the database.

Type Java MySQL JavaScript

json JsonValue json *

jsonarray JsonArray json array

jsonobject JsonObject json object

Enum Types
Enum types map a series of discrete numeric integer values to text names. Though additional values may be
added in the future, existing values will not change names or IDs.

notification_level
ID Name Notes

0 none default level, no associated formatting

1 success green

2 info cyan

3 notice yellow

4 warning red

5 primary blue, elevated over none

6 secondary grey, below none

notification_type

ID Name Notes

0 post

1 task

2 request request received

3 response response to request received

post_level
ID Name Notes

0 none default level, no associated formatting

1 success green

2 info cyan

3 notice yellow

4 warning red

5 primary blue, elevated over none

6 secondary grey, below none

Sandbox Quick Start Guide
In order to streamline onboarding for new XINA projects we have created a XINA "Sandbox" environment to test
data pipelines and tools. Everything in the sandbox is fully configured as a typical XINA production environment.

Step 1: Request NAMS Access

To get started, first request access through the NAMS service. The application name is "GSFC XINA Sandbox".

Step 2: First Login
Once you receive confirmation that the account is approved, perform your first login to the XINA Sandbox by

going to sandbox.xina.io. This initial login creates your user account. You will initially have access to a series of
default Sandbox data. If you require access for a specific project contact our team and we will help finish setting
up required permissions.

Step 3: Create an API Key
To access the XINA API for importing data you will require a XINA API key. In the XINA web application, click
your user name in the top right, then "User Profile" in the drop down.

Switch to the "Access Keys" tab and click "Create New Key".

Copy the entire displayed text and save it to a local file in your preferred location. You will need to reference this

file when opening the XINA Tunnel to use the XINA API. A common naming convention is
<mission>_xina_key.json . The key will only be displayed once upon creation, if lost you will need to make a new

key.

https://nams.nasa.gov
https://sandbox.xina.io
https://wiki.xina.io/uploads/images/gallery/2023-04/user-profile.png
https://wiki.xina.io/uploads/images/gallery/2023-04/user-profile-key.png
https://wiki.xina.io/books/utilities/page/xina-tunnel

Step 4: Download XINA Tunnel and XINA Import

The XINA Tunnel and XINA Import utilities are the recommended starting point for importing data. Details for
each are available on their respective wiki pages.

Step 5: Import Sample Data
UNDER CONSTRUCTION

https://wiki.xina.io/uploads/images/gallery/2023-04/user-profile-key2.png
https://wiki.xina.io/books/utilities/page/xina-tunnel
https://wiki.xina.io/books/utilities/page/xina-import

Spectra Quickstart
XINA Structs includes dedicated support for spectra data files (or basically any numeric XY data plotting). Spectra
data is stored in files attached to event records.

Getting Started
Once the Sandbox Quick Start Guide is complete, you can create a new model in the Sandbox project, and then
a new spectra database in that model.

Create Model

Note that for this example we use "model_name" as the name of the model, so if using a different name
substitute anywhere "model_name" is used in the following examples.

Create Spectra Database
Finally, create a new event file database to hold the spectra. This is an example using many of the spectra-
specific features:

{
 "action": "struct_create",
 "create": "model",
 "parent": "sandbox",
 "name": "model_name",
 "label": "Model Name",
 "desc": "example model",
 "group_teams": ["sandbox", "sandbox_dev"],
 "database_teams": ["sandbox", "sandbox_dev"]
}

{
 "action": "struct_create",
 "create": "event",
 "type": "file",
 "group": "sandbox.model_name",
 "name": "spectra",
 "label": "Spectra",

https://wiki.xina.io/books/getting-started/page/sandbox-quick-start-guide

 "desc": "spectra",
 "singular": "spectrum",
 "plural": "spectra",
 "teams": ["sandbox", "sandbox_dev"],
 "fields": [
 {
 "name": "test_stage",
 "label": "Test Stage",
 "type": "asciivstring(64)",
 "nul": true
 },
 {
 "name": "group_id",
 "label": "Group ID",
 "type": "asciivstring(128)",
 "nul": true
 },
 {
 "name": "active_mo",
 "label": "Active MO",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "active_pa",
 "label": "Active PA",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "optical_axis",
 "label": "Optical Axis",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "osa_confs",
 "label": "OSA Configurations",
 "type": "asciivstring(8)",
 "nul": true

 },
 {
 "name": "pa_current_sp",
 "label": "PA Current Setpoint",
 "type": "float(8)",
 "unit": "mA",
 "nul": true
 },
 {
 "name": "lom_temp",
 "label": "LOM Temperature",
 "type": "float(8)",
 "unit": "C",
 "nul": true
 },
 {
 "name": "peak_wavelength",
 "label": "Peak Wavelength",
 "type": "float(8)",
 "unit": "nm",
 "nul": true
 },
 {
 "name": "peak_amplitude",
 "label": "Peak Amplitude",
 "type": "float(8)",
 "unit": "dBm",
 "nul": true
 },
 {
 "name": "sidemode_lo_wavelength",
 "label": "Sidemode Lo Wavelength",
 "type": "float(8)",
 "unit": "nm",
 "nul": true
 },
 {
 "name": "sidemode_lo_amplitude",
 "label": "Sidemode Lo Amplitude",
 "type": "float(8)",

 "unit": "dBm",
 "nul": true
 },
 {
 "name": "sidemode_hi_wavelength",
 "label": "Sidemode Hi Wavelength",
 "type": "float(8)",
 "unit": "nm",
 "nul": true
 },
 {
 "name": "sidemode_hi_amplitude",
 "label": "Sidemode Hi Amplitude",
 "type": "float(8)",
 "unit": "dBm",
 "nul": true
 }
],
 "conf": {
 "spectrum": {
 "charts": {
 "summary": {
 "x": [
 "t_start",
 "t_end",
 "$groupRelativeTime",
 "$groupIndex",
 "lom_temp",
 "pa_current_sp",
 "$id"
],
 "y": [
 "peak_wavelength",
 "peak_amplitude",
 "sidemode_lo_wavelength",
 "sidemode_lo_amplitude",
 "sidemode_hi_wavelength",
 "sidemode_hi_amplitude"
]
 },

 "spectrum": {
 "x": [
 {
 "field": "Wavelength (nm)",
 "label": "Wavelength (nm)",
 "source": "file"
 },
 {
 "field": "Spectral Width About Peak (GHz)",
 "label": "Spectral Width About Peak (GHz)",
 "source": "file"
 }
],
 "y": [
 {
 "field": "Amplitude (dBm)",
 "label": "Amplitude (dBm)",
 "source": "file"
 },
 {
 "field": "Out of Band (%)",
 "label": "Out of Band (%)",
 "source": "file"
 }
]
 }
 },
 "filters": [
 {
 "name": "fast",
 "label": "Fast",
 "desc": "Fast",
 "color": "green",
 "checks": [
 {
 "field": "optical_axis",
 "value": "fast"
 }
]
 },

 {
 "name": "slow",
 "label": "Slow",
 "desc": "Slow",
 "color": "red",
 "checks": [
 {
 "field": "optical_axis",
 "value": "slow"
 }
]
 },
 {
 "name": "narrow",
 "label": "Narrow",
 "desc": "Narrow",
 "color": "purple",
 "checks": [
 {
 "field": "osa_confs",
 "value": "narrow"
 }
]
 },
 {
 "name": "wide",
 "label": "Wide",
 "desc": "Wide",
 "color": "orange",
 "checks": [
 {
 "field": "osa_confs",
 "value": "wide"
 }
]
 }
],
 "grouping": [
 "t_start",
 "group_id",

There's a lot happening here, so we can unpack in sections.

Basic Database Parameters

This is the basic database configuration. The "type": "file" indicates each record will have an associated file (the
spectrum data). The "teams" determines which users have read/write access to the database, and may need to
be different depending on the XINA environment.

Custom Fields

 "test_stage",
 "active_mo",
 "active_pa",
 "optical_axis",
 "osa_confs",
 "pa_current_sp"
]
 }
 }
}

{
 "action": "struct_create",
 "create": "event",
 "type": "file",
 "group": "sandbox.model_name",
 "name": "spectra",
 "label": "Spectra",
 "desc": "spectra",
 "singular": "spectrum",
 "plural": "spectra",
 "teams": ["sandbox", "sandbox_dev"]
}

{
 "fields": [
 {
 "name": "test_stage",
 "label": "Test Stage",
 "type": "asciivstring(64)"
 },
 {

 "name": "group_id",
 "label": "Group ID",
 "type": "asciivstring(128)",
 "nul": true
 },
 {
 "name": "active_mo",
 "label": "Active MO",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "active_pa",
 "label": "Active PA",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "optical_axis",
 "label": "Optical Axis",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "osa_confs",
 "label": "OSA Configurations",
 "type": "asciivstring(8)",
 "nul": true
 },
 {
 "name": "pa_current_sp",
 "label": "PA Current Setpoint",
 "type": "float(8)",
 "unit": "mA",
 "nul": true
 },
 {
 "name": "lom_temp",
 "label": "LOM Temperature",
 "type": "float(8)",

 "unit": "C",
 "nul": true
 },
 {
 "name": "peak_wavelength",
 "label": "Peak Wavelength",
 "type": "float(8)",
 "unit": "nm",
 "nul": true
 },
 {
 "name": "peak_amplitude",
 "label": "Peak Amplitude",
 "type": "float(8)",
 "unit": "dBm",
 "nul": true
 },
 {
 "name": "sidemode_lo_wavelength",
 "label": "Sidemode Lo Wavelength",
 "type": "float(8)",
 "unit": "nm",
 "nul": true
 },
 {
 "name": "sidemode_lo_amplitude",
 "label": "Sidemode Lo Amplitude",
 "type": "float(8)",
 "unit": "dBm",
 "nul": true
 },
 {
 "name": "sidemode_hi_wavelength",
 "label": "Sidemode Hi Wavelength",
 "type": "float(8)",
 "unit": "nm",
 "nul": true
 },
 {
 "name": "sidemode_hi_amplitude",

These are the custom fields to include in the database, which will be used in addition to the default event

database fields. A value for each field must be provided, unless "nul" is set to true .

Spectra Configuration

 "label": "Sidemode Hi Amplitude",
 "type": "float(8)",
 "unit": "dBm",
 "nul": true
 }
 }
}

{
 "conf": {
 "spectrum": {
 "charts": {
 "summary": {
 "x": [
 "t_start",
 "t_end",
 "$groupRelativeTime",
 "$groupIndex",
 "lom_temp",
 "pa_current_sp",
 "$id"
],
 "y": [
 "peak_wavelength",
 "peak_amplitude",
 "sidemode_lo_wavelength",
 "sidemode_lo_amplitude",
 "sidemode_hi_wavelength",
 "sidemode_hi_amplitude"
]
 },
 "spectrum": {
 "x": [
 {
 "field": "Wavelength (nm)",
 "label": "Wavelength (nm)",

https://wiki.xina.io/books/structured-data-standards/page/struct-definitions-reference#bkmrk-events
https://wiki.xina.io/books/structured-data-standards/page/struct-definitions-reference#bkmrk-events

 "source": "file"
 },
 {
 "field": "Spectral Width About Peak (GHz)",
 "label": "Spectral Width About Peak (GHz)",
 "source": "file"
 }
],
 "y": [
 {
 "field": "Amplitude (dBm)",
 "label": "Amplitude (dBm)",
 "source": "file"
 },
 {
 "field": "Out of Band (%)",
 "label": "Out of Band (%)",
 "source": "file"
 }
]
 }
 },
 "filters": [
 {
 "name": "fast",
 "label": "Fast",
 "desc": "Fast",
 "color": "green",
 "checks": [
 {
 "field": "optical_axis",
 "value": "fast"
 }
]
 },
 {
 "name": "slow",
 "label": "Slow",
 "desc": "Slow",
 "color": "red",

 "checks": [
 {
 "field": "optical_axis",
 "value": "slow"
 }
]
 },
 {
 "name": "narrow",
 "label": "Narrow",
 "desc": "Narrow",
 "color": "purple",
 "checks": [
 {
 "field": "osa_confs",
 "value": "narrow"
 }
]
 },
 {
 "name": "wide",
 "label": "Wide",
 "desc": "Wide",
 "color": "orange",
 "checks": [
 {
 "field": "osa_confs",
 "value": "wide"
 }
]
 }
],
 "grouping": [
 "t_start",
 "group_id",
 "test_stage",
 "active_mo",
 "active_pa",
 "optical_axis",
 "osa_confs",

Finally, the "conf" object contains the information required for XINA to interpret the event database as a spectra
database. This contains three sections.

Charts

The charts section contains two subsections, "summary" , and "spectra" . The summary chart is displayed on the
top of the Spectra Tool and plots one data point per spectrum. The configuration specifies the fields which should
be listed as selectable options for the X and Y axes. This can include any of the event database default fields
and/or custom fields. It also may include macros, indicated by starting with the $ character. These add additional
logic and are implemented in the spectra tool itself.

The spectra chart is displayed at the bottom of the tool, and plots the full set of data for each selected spectrum.
The options for each axis must be defined here to be correctly located in the associated file.

Other Features

The "filters" section defines filter options that will appear on the spectra tool, and the "grouping" option defines
which fields should be available as options to create spectra groupings in the summary chart. More info on other

settings is available here.

Spectrum Data Files
The spectrum files may either use a JSON format or DSV format. More formats may be added in the future.

JSON Format
A spectrum JSON file must contain a single JSON object, where each member should have an array of the same
length of numeric values. An example compatible with the above spectra database could look like:

Note that the keys for each array must exactly match the names in the spectra "conf" object, or they will not be
recognized correctly. Keys may be included which are not listed there, but they will be ignored for data purposes.

DSV Format

 "pa_current_sp"
]
 }
 }
}

{
 "Wavelength (nm)": [1, 2, 3],
 "Spectral Width About Peak (GHz)": [0, 1, 0],
 "Amplitude (dBm)": [100, 200, 300],
 "Out of Band (%)": [5, 6, 7],
 "Comment": "ignored"
}

https://wiki.xina.io/books/structured-data-standards/page/struct-definitions-reference#bkmrk-spectra

The spectrum DSV file format is based on the standard XINA Structs DSV file format, but doesn't require a time
field. For example, a file with the same data as the above JSON example could look like:

Modifications
A number of actions are available for changing the structure of a spectra database.

Drop
The drop action can delete an entire database (or group/model). This is permanent and deletes all data within the
database as well, but is useful during initial experimentation as it gives a clean slate.

Drop Group

Note that when dropping a group, the "drop_children" flag must be true if the group contains any child groups or
databases. In doing so all child groups and databases (and all data within) are deleted permanently.

Drop Database

Reset Action
The reset action deletes all data in a database permanently. This is the fastest way to clear a database.

ignored comment
Wavelength (nm), Spectral Width About Peak (GHz), Amplitude (dBm), Out of Band (%)
1, 0, 100, 5
2, 1, 200, 6
3, 0, 300, 7

{
 "action": "drop",
 "drop": "group",
 "group": "sandbox.model_name",
 "drop_children": true
}

{
 "action": "drop",
 "drop": "database",
 "database": "sandbox.model_name.spectra"
}

https://wiki.xina.io/books/structured-data-standards/page/structs-dsv-format

Altering Fields
Fields can be added or removed using the alter actions.

Add Fields

Note that when adding fields to a database containing data, "nul" should typically be set to true (since existing
records won't have a value for the field).

Drop Fields

{
 "action": "reset",
 "database": "sandbox.model_name.spectra"
}

{
 "action": "alter",
 "alter": "database",
 "op": "add_fields",
 "database": "sandbox.model_name.spectra",
 "fields": [
 {
 "name": "new_field",
 "label": "New Field",
 "type": "float(8)",
 "nul": true
 }
]
}

{
 "action": "alter",
 "alter": "database",
 "op": "drop_fields",
 "database": "sandbox.model_name.spectra",
 "fields": [
 "unused_field"
]
}

Note that any data in dropped fields is deleted permanently.

Alter Configuration
The struct_alter_database_conf action can be used to update the spectrum configuration object. Care should be
used when making changes here to ensure updates align with existing/added fields, and do not reference
dropped fields, or errors may occur when loading the tool. Additionally, this replaces the entire "spectrum"
object, so any existing configuration must be included to be preserved.

{
 "action": "struct_alter",
 "alter": "database",
 "op": "conf",
 "database": "sandbox.model_name.spectra",
 "conf": {
 "spectrum": { ... }
 }
}

