
Record Syntax

JSON Format
A single record may be encoded as a JSON object:

Property Value

<field name / label> field type appropriate value / null

"expressions" JSON object mapping field name/label to expression

"file" binary object (if database has file enabled)

"tags" JSON array of string(s) (if database has tag enabled)

The "expressions" property allows field values to be specified by expression, rather than explicit value. Between
the base object and "expressions" object, field may only have a single value provided, or an error will be thrown.

Multiple records may be encoded as a JSON array of JSON objects in this format.

DSV Format
Record data may be provided in a delimiter separated values format. In this case the record data itself is

contained in a binary object.

Property Value

"type" "dsv" , "csv" , or "tsv"

"file" binary object

"delimiter" string (required for "dsv")

"quote" string (optional)

The "csv" and "tsv" types specify default delimiters of comma (,) and tab (\t), respectively.

Example

{
 "records": {
 "type": "dsv",
 "file" : "<object ID>",
 "delimit": ";"
 }

https://wiki.xina.io/expression-syntax
https://wiki.xina.io/binary-objects
https://wiki.xina.io/binary-objects
https://wiki.xina.io/binary-objects

The format of the separated values file is largely based on the RFC 4180 standard. The specific requirements
are:

lines must end with LF (\n) or CR LF (\r\n)
line breaks cannot be used in values
the default quote character is " (double quotes)
any field may be quoted by the quote character
any field containing the delimiter must be quoted
a quote character in a quoted value must be represented by two quote characters
the first row must contain the names of each field
blank lines with no data are ignored

}

Revision #20
Created 9 June 2022 16:21:12 by Nick Dobson
Updated 17 July 2024 16:35:46 by Nick Dobson

http://tools.ietf.org/html/rfc4180

