
Overview
The XINA API (or XAPI) provides programmatic access to a XINA server.

XAPI is built on the XINA Protocol (or XProtocol), a TCP format used to communicate with the XINA server. It is
designed to be simple and easy to implement across many languages and environments, using standard UTF-8
character encoding and JSON data structures.

Tokens
XProtocol is intended to be parsed in-place as a stream is read. This is achieved with variable length tokens of
the following format:

prefix length: one byte UTF-8 digit indicating length of the prefix in bytes
prefix: UTF-8 digit(s) indicating the length of the content in bytes
content: UTF-8 encoded string or binary data of (prefix count) bytes

For example:

14cake = "cake"
213big hamburger = "big hamburger"

The maximum allowed length of a single token is 2GB. A token may also be empty, which can be denoted with
either the prefix 10 or the shorthand prefix 0 .

Packets
Tokens are combined together into packets, which form all communication between the client and server.

Client Packets

Note that client applications do not connect directly to the server. The XINA Tunnel utility
performs the actual server connection, authentication, and security, and provides a local
server for local client to connect.

Note that the content length is specified in bytes, not characters. Because UTF-8 is a
variable length encoding format, it is recommend to first convert string data to bytes before
creating a token for an accurate count.

https://wiki.xina.io/books/utilities/page/xina-tunnel

Client packets are sent from the client to server. They use the following format:

packet type :: one byte UTF-8 character
header token :: JSON object containing header information (used primarily for system purposes,
typically empty)
content token :: UTF-8 encoded JSON object, binary data, or empty depending on token type

Client packets use the following packet types:

Type Code Description

ACTION A contains an API action (most common
packet type)

BINARY B contains binary data (used for transmitting
file data)

CLOSE X closes the connection

CONTINUE C prompts continuing a data stream from the
server

END E indicates the end of a series of binary
packets

INIT I initializes the connection

KEEPALIVE K ignored by both server and client, keeps
connection open

OBJECT O indicates the start of a binary object

Server Packets
Server packets, inversely, are sent from the server to clients. They use the following format:

packet type :: one byte UTF-8 character
status code :: three byte UTF-8 numeric status code
header token :: JSON object containing header information (only used currently for system functions,
typically empty)
status token :: JSON object containing status information
content token :: UTF-8 encoded JSON object, binary data, or empty depending on token type

Server packets use the following packet types:

Type Code Description

KEEPALIVE K ignored by both server and client, keeps
connection open

SERVER S primary server packet type, used for all
functions

The server packet status token is a JSON object in the following format:

 {
 "type" : "OK" or "ER",
 "code" : <int>,

The "type" indicates if an action succeeded ("OK") or failed ("ER"). The "code" is a numeric identifier for the
status and will be in the range of 100 to 500.

Code Description

1XX Success, more data available

2XX Success, data ended

4XX Content error

5XX Server error

The optional "message" contains a plain text description of the status or error.

Control Flow
In practice the general design of XProtocol is call and response. Each packet (of most types) sent by a client will

receive a single server packet in response. The exception to this rule is the binary object upload procedure,
detailed below.

Initialization
When an application opens a connection with the XINA Tunnel, it must first send a single INIT packet containing
a JSON object:

Currently the only attribute for this object is the XProtocol version number, which is currently 3.0. More attributes
may be added in the future. The XINA Tunnel will then respond with a server packet indicating if the initialization
is accepted. If it is not, the connection will then be closed by XINA Tunnel. If it is accepted the application may
then begin sending other XAPI packets.

Actions
The bulk of the XAPI communication consists of a collection of discrete actions. Actions are fully transactional;
any changes performed by an action must all be successful or no changes will be committed.

Each action is encoded as a single JSON object, with the exact format dependent on the action type. There are

two categories of actions; data actions, which read or manipulate data, and administrative actions, which alter
data structures or perform other administrative tasks.

All actions have a standard server response. If an action returns no data (such as a write action), or if the
returned data fits in a single SERVER packet, the server will respond with a single SERVER packet, indicating
success or failure for the action in the status token, and with any returned data in the content token. If a SERVER
packet contains data, it will always be formatted at a single JSON object.

 "message" : <string, optional>
 }

{ "version": "3.0" }

api-action-data.md
https://wiki.xina.io/api-action-admin.md

client server

ACTION ->

<- SERVER

In some cases the server may send the results of a query over multiple packets. This is indicated by a 1XX
status code in a SERVER packet. The client may send a CONTINUE token to receive the next packet, until a 2XX
code is received, indicating the data has been sent.

client server

ACTION ->

<- SERVER 1XX

CONTINUE ->

<- SERVER 1XX

CONTINUE ->

<- SERVER 2XX

In this case, the complete data response can be aggregated from the JSON objects according to the following
rules:

properties appearing in a single object are included as-is
properties appearing in multiple objects are merged based on the data type

if the first instance of a property is a JSON array, successive arrays are concatenated and non-
arrays are appended
otherwise, the values are appended individually into a JSON array

For the purposes of this merge operation, an explicit null value should be included in merged results, whereas
an explicit or implicit undefined should not.

Example

Given the following three server packets:

{
 "a": 0,
 "b": 1
}

{
 "a": undefined,
 "b": [2]
 "c": [4, 5, 6]
}

The correctly merged result would be:

Binary Object Upload
The OBJECT , BINARY , and END packet types allow a client to upload binary objects (such as files) to XINA.
Binary objects received by the server are assigned a unique ID, which is returned to the client. The client may
then use the ID to refer to the cached object in a future action. Cached objects are deleted if not used within 24
hours.

client server notes

OBJECT -> initializes the object

BINARY -> contains binary data

... -> contains additional binary data
as needed

END -> ends the object

<- SERVER 2XX content contains object_id

The SERVER token content will be a JSON object in the format:

Unlike other packet types, the server will not respond to each client packet, but only once the END packet is
received. If the client sends any packet other than an END or BINARY packet after an OBJECT or BINARY
packet any loaded data will be discarded. If an END packet is received without any binary data, an object_id will
not be returned.

{
 "b": null,
 "c": [7, 8, 9]
}

{
 "a": 0,
 "b": [1, [2], null],
 "c": [4, 5, 6, 7, 8, 9]
}

{ "object_id": "<id>" }

Revision #12
Created 9 June 2022 16:13:54 by Nick Dobson
Updated 8 July 2024 16:53:03 by Nick Dobson

