
Data Actions
Data actions read from or write to XINA databases.

Read Actions

SELECT
The primary read action in XINA. It closely mirrors the MySQL SELECT query, and returns data as a header of

columns and list of rows. The full syntax for the SELECT object is available here.

Property Value Req Default

action "select" ?

select select ?

rows integer 10,000

use_strings boolean false

echo boolean false

The server response to a SELECT action will start with a header packet, containing a JSON array of JSON
object(s) indicating the name of each column as a string and the XINA data type of each column as a string .
This will be followed by packet(s) containing the data, as a JSON array of of JSON array(s) of values.

The optional rows property sets the limit of rows per packet. Note that this does not limit the total number of rows
returned, this is set by the limit property of the select object.

If the use_strings property is true , all values will be stored as JSON strings instead of their associated JSON
type.

If the echo property is true , the generated SQL query will be included in the header object in the "query"
property. This is provided to support query debugging; it does not affect the query itself.

Example

Given a table t with two columns, a (int(4)), and b (utf8text), and three rows:

a b

0 "x"

1 "y"

2 "z"

The following SELECT action:

https://wiki.xina.io/select-syntax
https://wiki.xina.io/select-syntax

Would return three server packets.

First, the header information:

100

Second, the first two rows (limited to two by the rows property):

100

Third, the last remaining row (with the status code 200 indicating the end of the data):

200

{
 "action": "select",
 "select": {
 "from": "t"
 },
 "rows": 2
}

[
 {
 "name": "a",
 "type": "int(4)"
 },
 {
 "name": "b",
 "type": "utf8text"
 }
]

[
 [0, "x"],
 [1, "y"]
]

[
 [2, "z"]
]

FETCH
Reads specific types of data in a more structured format than the SELECT action. Although the syntax and
response format differs depending on fetch type, all fetch actions share the boolean property "count" , which if
true, overrides the default action output with a single value indicating the total count result for the current
selection.

FETCH RECORDS
Fetches records from a database.

Property Value Req Default

action "fetch" ?

fetch "records" ?

database database specifier ?

records records specifier

where expression

order array of order terms default database order

limit integer 1,000 (see below)

offset integer

children boolean true

count boolean false

Fetched records are returned as JSON objects, with each attribute and field name as a property key with the
corresponding value. In databases with the file feature enabled, each record will also include a generated
presigned URL in the "file_url" property, and an S3 key reference in the "file_key" property.

If children is true and the specified database contains one or more child databases, all child records for each
record will be included in the result. Each record with children will contain a "children" property, a JSON object
with each key containing the name of the child database, and each value a JSON array of child record(s).

If both records and where are provided, they will be combined with a boolean AND operation.

The default limit for this operation is 1,000. Unlike the SELECT action which streams data directly from the
underlying database, FETCH involves additional server overhead processing and formatting the result, so a limit
is enforced to maintain system performance. Exceeding the default limit explicitly is permitted but may cause
performance issues depending on server configuration.

FETCH MULTIRECORDS
Fetches records from several databases at once.

{
 "count": <integer>
}

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-records
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term

Property Value Req Default

action "fetch" ?

fetch "multirecords" ?

databases databases specifier ?

where expression

order array of order terms default order of first database

limit integer 1,000 (see below)

offset integer

children boolean true

count boolean false

Fetched records are returned as JSON objects, in the same format as the standard FETCH RECORDS action,
with the same behavior for file and child records. Each top level record will also include a "database_id" , with the
numeric database ID of the database of origin for the record.

Internally this action uses the multi-database source, which creates a SQL UNION of the record tables of each
database as a single virtual table. This is achived by unioning each column by field name. As such this action
works best with databases with the same set of fields (names and data types). If databases each have fields with
the same names but different types unpredictable server or client side errors may result.

FETCH PSEUDORECORDS
Fetches data from an arbirary query formatted as though it represents a set of records.

Property Value Req Default

action "fetch" ?

fetch "pseudorecords" ?

select select ?

where expression

order array of order terms default order of first database

limit integer

offset integer

count boolean false

Each row of the result will be formatted as a JSON object, with each property key taken from the SELECT
response header.

FETCH FOLLOW
Fetches all follows for a single user.

Property Value Req Default

action "fetch" ?

https://wiki.xina.io/specifier-syntax#bkmrk-databases
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term
https://wiki.xina.io/select-syntax
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term

Property Value Req Default

fetch "follows" ?

user user specifier current user

count boolean false

FETCH KEYS
Fetches all keys for a single user.

Property Value Req Default

action "fetch" ?

fetch "keys" ?

user user specifier current user

count boolean false

FETCH NOTIFICATIONS
Fetches notifications for a single user.

Property Value Req Default

action "fetch" ?

fetch "keys" ?

user user specifier current user

type notification type

seen boolean

Notifications will always be returned ordered by time, descending.

If type is provided, only notifications of the same type will be returned.

If seen is true , only seen notifications will be returned. If seen is false , only unseen notifications will be
returned.

FETCH POSTS
Fetches wall posts.

Property Value Req Default

fetch "posts" ?

wall wall specifier all walls

following boolean false

threads boolean false

post post ID

https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-wall

Property Value Req Default

children boolean false

records boolean false

FETCH PREFS
Fetches preferences for a single user.

Property Value Req Default

action "fetch" ?

fetch "prefs" ?

user user specifier current user

FETCH PREF DEFS
Fetches server preference definitions.

Property Value Req Default

action "fetch" ?

fetch "pref_defs" ?

FETCH USER SUBSCRIPTIONS
Fetches subscriptions for a single user.

Property Value Req Default

action "fetch" ?

fetch "user_subscriptions" ?

user user specifier current user

FETCH TASKS
Fetches task information.

Property Value Req Default

action "fetch" ?

fetch "tasks" ?

from task ID

user user specifier

text string

where expression

order array of order terms recent first

https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term

Property Value Req Default

limit integer 1,000 (see below)

offset integer

count boolean false

FETCH TEAM SUBSCRIPTIONS
Fetches subscriptions for a single team.

Property Value Req Default

action "fetch" ?

fetch "user_subscriptions" ?

team team specifier ?

FETCH THREADS
Fetches all task threads.

Property Value Required Default

action "fetch" ?

fetch "threads" ?

FETCH USERS
Fetches user information.

Property Value Req Default

action "fetch" ?

fetch "users" ?

users users specifier all users

order array of order terms recent first

limit integer 1,000 (see below)

offset integer

DOWNLOAD
The download action generates a signed URL to download a file stored in the XINA system. Note that this does
not actually perform the download; the returned URL can be used outside the XINA API to download the file.

DOWNLOAD RECORD
Generates a signed URL for a record file.

https://wiki.xina.io/specifier-syntax#bkmrk-team
https://wiki.xina.io/specifier-syntax#bkmrk-users
https://wiki.xina.io/select-syntax#bkmrk-order-term

Property Value Req Default

action "download" ?

download "record" ?

database database specifier ?

record record specifier ?

version integer most recent

DOWNLOAD POST
Generates a signed URL for a post file.

Property Value Required Default

action "download" ?

download "post" ?

post post ID ?

Write Actions

INSERT
The INSERT action inserts one or more records into a XINA database.

By default, the action will fail if any records being inserted have duplicate key values already in the database. If a
different on_duplicate property is set, duplicate records will be updated according to the rules in the table. Only
fields explicitly set in the INSERT will be changed. This is analogous to an INSERT ... ON DUPLICATE KEY UPDATE
MySQL query.

Property Value Req Default

action "insert" ?

database database specifier ?

records records data ?

on_duplicate "fail" or "update" "fail"

fail_no_op boolean false

Examples

Given a starting database containing key field k , fields f1 , f2 , and f3 , with tags enabled, containing the
following two records:

k f1 f2 f3 tags

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/select-syntax#bkmrk-record
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/data-syntax#bkmrk-records

a 1 2 3 t1

b 1 2 3 t1

And inserting records:

on_duplicate: "fail"

Action fails due to duplicate key value "a" . No change occurs.

on_duplicate: "update"

Record with key value "a" is updated, and record with key value "c" is inserted. Note that field f3 of "a" is
unaffected because no inserted records specified an explicit value for f3 .

k f1 f2 f3 tags

a 4 null 3 t1, t2

b 1 2 3 t1

c 1 null null t2

REPLACE
The REPLACE action inserts one or more records into a XINA database and overwrites any existing records
with duplicate keys.

Property Value Req Default

action "replace" ?

database database specifier ?

records records data ?

on_duplicate "update" , "delete" , or
"trash" (if trash enabled for

database)

"update"

fail_no_op boolean false

Examples

Given a starting database containing key field k , fields f1 , f2 , and f3 , with tags enabled, containing the
following two records:

k f1 f2 f3 tags

[
 { "k": "a", "f1": 4, "f2": null, "tags": ["t2"] },
 { "k": "c", "f1": 1, "f2": null, "tags": ["t2"] }
]

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/data-syntax#bkmrk-records

a 1 2 3 t1

b 1 2 3 t1

And replacing records:

on_duplicate: "update"

Record with key value "a" is updated, and record with key value "c" is inserted. Note that f3 of "a" is now
null and t1 is removed because all fields are overridden by the incoming record.

k f1 f2 f3 tags

a 4 null null t2

b 1 2 3 t1

c 1 null null t2

on_duplicate: "trash" or "delete"

Existing record with key value "a" is deleted (or trashed), and new records "a" and "c" are inserted.

k f1 f2 f3 tags

b 1 2 3 t1

a 4 null null t2

c 1 null null t2

If "trash" is used, the trash table now contains the original "a" record.

k f1 f2 f3 tags

a 1 2 3 t1

SET
The SET action sets a database to contain the provided, and only the provided, records. Other records already
present in the database are removed (either trashed or deleted, depending on the provided configuration).

Property Value Req Default

action "set" ?

database database specifier ?

[
 { "k": "a", "f1": 4, "f2": null, "tags": ["t2"] },
 { "k": "c", "f1": 1, "f2": null, "tags": ["t2"] }
]

https://wiki.xina.io/specifier-syntax#bkmrk-database

Property Value Req Default

records records data ?

on_duplicate "update" , "delete" , or
"trash" (if trash enabled for

database)

"update"

on_remove "delete" or "trash" (if trash
enabled for database)

"trash" if enabled, "delete"
otherwise

fail_no_op boolean false

Examples

Given a starting database containing key field k , fields f1 , f2 , and f3 , with tags enabled, containing the
following two records:

k f1 f2 f3 tags

a 1 2 3 t1

b 1 2 3 t1

And setting records:

on_duplicate: "update"

Record "a" is updated, record "c" is inserted, and record "b" is deleted (or trashed, depending on on_remove
). Note that f3 of "a" is now null and t1 is removed because all fields are overridden by the incoming record.

k f1 f2 f3 tags

a 4 null null t2

c 1 null null t2

on_duplicate: "trash" or "delete"

All existing records are deleted (or trashed, depending on on_remove), and new records "a" and "c" are
inserted.

k f1 f2 f3 tags

a 4 null null t2

c 1 null null t2

UPDATE

[
 { "k": "a", "f1": 4, "f2": null, "tags": ["t2"] },
 { "k": "c", "f1": 1, "f2": null, "tags": ["t2"] }
]

https://wiki.xina.io/data-syntax#bkmrk-records

The UPDATE action updates the values of one or more fields and/or attached files of one or more records in a
single database.

Property Value Req Default

action "update" ?

database database specifier ?

records records specifier ?

fields jsonobject map of fields to
values to update (see below)

expressions jsonobject map of fields to
expressions to update (see
below)

file string object ID of file to update
(see below)

fail_no_op boolean false

The fields and expressions properties are JSON objects, where each key is interpretted as a field specifier in
the context of the current database. For the fields property, each value is interpretted as a literal JSON value for

the type of the specified field. For the expressions property, each value is interpretted as an expression, with the
evaluated result of the expression stored with the record. These are provided separately because expressions
would otherwise not be distinguishable from JSON object value literals.

The file property may be provided for databases with the file feature enabled. When the file is updated,
associated file record attributes (file_size , file_type , etc) will be updated automatically from the new file.

If a single field is referenced more than once across the fields and expressions object, the action will fail, as the
result would be ambiguous.

By default, if no records are found matching the records specifier, or no values are provided for fields ,
expressions , and file , the action will complete successfully without any changes occuring. If fail_no_op is true ,

the action will fail. Note, however, that fail_no_op will only detect these specific no-op conditions; it is possible
that no changes will occur if provided update(s) do not actually change any fields of matched record(s).

DELETE
The DELETE action deletes one or more records from a database.

Note that deleted records and all associated data are permanently deleted and cannot be restored.

This action requires the DELETE database privilege.

Property Value Req Default

action "delete" ?

This documentation applies to XINA 9.2 and above.

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/api-syntax-data.md#records
specifier-syntax#bkmrk-field
https://wiki.xina.io/expression-syntax

Property Value Req Default

database database ?

records records ?

fail_no_op boolean false

TRASH
The TRASH action moves one or more records into the trash table of a database. This is only available in
databases with the trash feature enabled, otherwise the action will fail.

This action requires the TRASH database privilege.

Property Value Req Default

action "trash" ?

database database ?

records records ?

fail_no_op boolean false

RESTORE
The RESTORE action moves one or more records from the trash table of a database into the record table. This is
only available in databases with the trash feature enabled, otherwise the action will fail.

If any records being restored have duplicate keys as other records currently in the database the action will fail.

This action requires the TRASH database privilege.

Property Value Req Default

action "restore" ?

database database ?

records records ?

fail_no_op boolean false

DISPOSE
The DISPOSE action deletes one or more records from the trash table of a database. This is only available in
databases with the trash feature enabled, otherwise the action will fail.

Note that disposed records and all associated data are permanently deleted and cannot be restored.

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records

This action requires the DELETE database privilege.

Property Value Req Default

action "dispose" ?

database database ?

records records ?

fail_no_op boolean false

Revision #56
Created 9 June 2022 16:17:19 by Nick Dobson
Updated 5 October 2023 20:44:08 by Nick Dobson

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records

