
API Reference

Overview

Binary Objects

Data Actions

Admin Actions

Task and Thread Actions

Struct Actions

Specifier Syntax

Record Syntax

Expression Syntax

Select Syntax

Definitions Syntax

Action Index

Overview
The XINA API (or XAPI) provides programmatic access to a XINA server.

XAPI is built on the XINA Protocol (or XProtocol), a TCP format used to communicate with the XINA server. It is
designed to be simple and easy to implement across many languages and environments, using standard UTF-8
character encoding and JSON data structures.

Tokens
XProtocol is intended to be parsed in-place as a stream is read. This is achieved with variable length tokens of
the following format:

prefix length: one byte UTF-8 digit indicating length of the prefix in bytes
prefix: UTF-8 digit(s) indicating the length of the content in bytes
content: UTF-8 encoded string or binary data of (prefix count) bytes

For example:

14cake = "cake"
213big hamburger = "big hamburger"

The maximum allowed length of a single token is 2GB. A token may also be empty, which can be denoted with
either the prefix 10 or the shorthand prefix 0 .

Packets
Tokens are combined together into packets, which form all communication between the client and server.

Client Packets

Note that client applications do not connect directly to the server. The XINA Tunnel utility
performs the actual server connection, authentication, and security, and provides a local
server for local client to connect.

Note that the content length is specified in bytes, not characters. Because UTF-8 is a
variable length encoding format, it is recommend to first convert string data to bytes before
creating a token for an accurate count.

https://wiki.xina.io/books/utilities/page/xina-tunnel

Client packets are sent from the client to server. They use the following format:

packet type :: one byte UTF-8 character
header token :: JSON object containing header information (used primarily for system purposes,
typically empty)
content token :: UTF-8 encoded JSON object, binary data, or empty depending on token type

Client packets use the following packet types:

Type Code Description

ACTION A contains an API action (most common
packet type)

BINARY B contains binary data (used for transmitting
file data)

CLOSE X closes the connection

CONTINUE C prompts continuing a data stream from the
server

END E indicates the end of a series of binary
packets

INIT I initializes the connection

KEEPALIVE K ignored by both server and client, keeps
connection open

OBJECT O indicates the start of a binary object

Server Packets
Server packets, inversely, are sent from the server to clients. They use the following format:

packet type :: one byte UTF-8 character
status code :: three byte UTF-8 numeric status code
header token :: JSON object containing header information (only used currently for system functions,
typically empty)
status token :: JSON object containing status information
content token :: UTF-8 encoded JSON object, binary data, or empty depending on token type

Server packets use the following packet types:

Type Code Description

KEEPALIVE K ignored by both server and client, keeps
connection open

SERVER S primary server packet type, used for all
functions

The server packet status token is a JSON object in the following format:

 {
 "type" : "OK" or "ER",
 "code" : <int>,

The "type" indicates if an action succeeded ("OK") or failed ("ER"). The "code" is a numeric identifier for the
status and will be in the range of 100 to 500.

Code Description

1XX Success, more data available

2XX Success, data ended

4XX Content error

5XX Server error

The optional "message" contains a plain text description of the status or error.

Control Flow
In practice the general design of XProtocol is call and response. Each packet (of most types) sent by a client will

receive a single server packet in response. The exception to this rule is the binary object upload procedure,
detailed below.

Initialization
When an application opens a connection with the XINA Tunnel, it must first send a single INIT packet containing
a JSON object:

Currently the only attribute for this object is the XProtocol version number, which is currently 3.0. More attributes
may be added in the future. The XINA Tunnel will then respond with a server packet indicating if the initialization
is accepted. If it is not, the connection will then be closed by XINA Tunnel. If it is accepted the application may
then begin sending other XAPI packets.

Actions
The bulk of the XAPI communication consists of a collection of discrete actions. Actions are fully transactional;
any changes performed by an action must all be successful or no changes will be committed.

Each action is encoded as a single JSON object, with the exact format dependent on the action type. There are

two categories of actions; data actions, which read or manipulate data, and administrative actions, which alter
data structures or perform other administrative tasks.

All actions have a standard server response. If an action returns no data (such as a write action), or if the
returned data fits in a single SERVER packet, the server will respond with a single SERVER packet, indicating
success or failure for the action in the status token, and with any returned data in the content token. If a SERVER
packet contains data, it will always be formatted at a single JSON object.

 "message" : <string, optional>
 }

{ "version": "3.0" }

api-action-data.md
https://wiki.xina.io/api-action-admin.md

client server

ACTION ->

<- SERVER

In some cases the server may send the results of a query over multiple packets. This is indicated by a 1XX
status code in a SERVER packet. The client may send a CONTINUE token to receive the next packet, until a 2XX
code is received, indicating the data has been sent.

client server

ACTION ->

<- SERVER 1XX

CONTINUE ->

<- SERVER 1XX

CONTINUE ->

<- SERVER 2XX

In this case, the complete data response can be aggregated from the JSON objects according to the following
rules:

properties appearing in a single object are included as-is
properties appearing in multiple objects are merged based on the data type

if the first instance of a property is a JSON array, successive arrays are concatenated and non-
arrays are appended
otherwise, the values are appended individually into a JSON array

For the purposes of this merge operation, an explicit null value should be included in merged results, whereas
an explicit or implicit undefined should not.

Example

Given the following three server packets:

{
 "a": 0,
 "b": 1
}

{
 "a": undefined,
 "b": [2]
 "c": [4, 5, 6]
}

The correctly merged result would be:

Binary Object Upload
The OBJECT , BINARY , and END packet types allow a client to upload binary objects (such as files) to XINA.
Binary objects received by the server are assigned a unique ID, which is returned to the client. The client may
then use the ID to refer to the cached object in a future action. Cached objects are deleted if not used within 24
hours.

client server notes

OBJECT -> initializes the object

BINARY -> contains binary data

... -> contains additional binary data
as needed

END -> ends the object

<- SERVER 2XX content contains object_id

The SERVER token content will be a JSON object in the format:

Unlike other packet types, the server will not respond to each client packet, but only once the END packet is
received. If the client sends any packet other than an END or BINARY packet after an OBJECT or BINARY
packet any loaded data will be discarded. If an END packet is received without any binary data, an object_id will
not be returned.

{
 "b": null,
 "c": [7, 8, 9]
}

{
 "a": 0,
 "b": [1, [2], null],
 "c": [4, 5, 6, 7, 8, 9]
}

{ "object_id": "<id>" }

Binary Objects
Binary objects are used to import any type of binary data. This may be used in conjuction with the low level API

upload function, or the data may be embedded directly.

Uploaded Objects
When referencing an uploaded binary object, the object is specified as a string by the server-provided
"object_id" . The object must have been uploaded prior to the API action in which it is being referenced.

Example

Embedded Objects
Alternatively, the content of an object may be embedded directly in JSON API actions.

Text
A text binary object contains UTF-8 encoded plain text.

Example

Base64

A base64 binary object must be encoded with the standard RFC 4648 format.

Example

{
 "file": "<object ID>"
}

{
 "file": {
 "type": "text",
 "content": "<plain text>"
 }
}

{
 "file": {

https://wiki.xina.io/overview#bkmrk-binary-object-upload
https://en.wikipedia.org/wiki/Base64

 "type": "base64",
 "content": "<base64 encoded text>"
 }
}

Data Actions
Data actions read from or write to XINA databases.

Read Actions

SELECT
The primary read action in XINA. It closely mirrors the MySQL SELECT query, and returns data as a header of

columns and list of rows. The full syntax for the SELECT object is available here.

Property Value Req Default

action "select" ?

select select ?

rows integer 10,000

use_strings boolean false

echo boolean false

The server response to a SELECT action will start with a header packet, containing a JSON array of JSON
object(s) indicating the name of each column as a string and the XINA data type of each column as a string .
This will be followed by packet(s) containing the data, as a JSON array of of JSON array(s) of values.

The optional rows property sets the limit of rows per packet. Note that this does not limit the total number of rows
returned, this is set by the limit property of the select object.

If the use_strings property is true , all values will be stored as JSON strings instead of their associated JSON
type.

If the echo property is true , the generated SQL query will be included in the header object in the "query"
property. This is provided to support query debugging; it does not affect the query itself.

Example

Given a table t with two columns, a (int(4)), and b (utf8text), and three rows:

a b

0 "x"

1 "y"

2 "z"

The following SELECT action:

https://wiki.xina.io/select-syntax
https://wiki.xina.io/select-syntax

Would return three server packets.

First, the header information:

100

Second, the first two rows (limited to two by the rows property):

100

Third, the last remaining row (with the status code 200 indicating the end of the data):

200

{
 "action": "select",
 "select": {
 "from": "t"
 },
 "rows": 2
}

[
 {
 "name": "a",
 "type": "int(4)"
 },
 {
 "name": "b",
 "type": "utf8text"
 }
]

[
 [0, "x"],
 [1, "y"]
]

[
 [2, "z"]
]

FETCH
Reads specific types of data in a more structured format than the SELECT action. Although the syntax and
response format differs depending on fetch type, all fetch actions share the boolean property "count" , which if
true, overrides the default action output with a single value indicating the total count result for the current
selection.

FETCH RECORDS
Fetches records from a database.

Property Value Req Default

action "fetch" ?

fetch "records" ?

database database specifier ?

records records specifier

where expression

order array of order terms default database order

limit integer 1,000 (see below)

offset integer

children boolean true

count boolean false

Fetched records are returned as JSON objects, with each attribute and field name as a property key with the
corresponding value. In databases with the file feature enabled, each record will also include a generated
presigned URL in the "file_url" property, and an S3 key reference in the "file_key" property.

If children is true and the specified database contains one or more child databases, all child records for each
record will be included in the result. Each record with children will contain a "children" property, a JSON object
with each key containing the name of the child database, and each value a JSON array of child record(s).

If both records and where are provided, they will be combined with a boolean AND operation.

The default limit for this operation is 1,000. Unlike the SELECT action which streams data directly from the
underlying database, FETCH involves additional server overhead processing and formatting the result, so a limit
is enforced to maintain system performance. Exceeding the default limit explicitly is permitted but may cause
performance issues depending on server configuration.

FETCH MULTIRECORDS
Fetches records from several databases at once.

{
 "count": <integer>
}

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-records
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term

Property Value Req Default

action "fetch" ?

fetch "multirecords" ?

databases databases specifier ?

where expression

order array of order terms default order of first database

limit integer 1,000 (see below)

offset integer

children boolean true

count boolean false

Fetched records are returned as JSON objects, in the same format as the standard FETCH RECORDS action,
with the same behavior for file and child records. Each top level record will also include a "database_id" , with the
numeric database ID of the database of origin for the record.

Internally this action uses the multi-database source, which creates a SQL UNION of the record tables of each
database as a single virtual table. This is achived by unioning each column by field name. As such this action
works best with databases with the same set of fields (names and data types). If databases each have fields with
the same names but different types unpredictable server or client side errors may result.

FETCH PSEUDORECORDS
Fetches data from an arbirary query formatted as though it represents a set of records.

Property Value Req Default

action "fetch" ?

fetch "pseudorecords" ?

select select ?

where expression

order array of order terms default order of first database

limit integer

offset integer

count boolean false

Each row of the result will be formatted as a JSON object, with each property key taken from the SELECT
response header.

FETCH FOLLOW
Fetches all follows for a single user.

Property Value Req Default

action "fetch" ?

https://wiki.xina.io/specifier-syntax#bkmrk-databases
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term
https://wiki.xina.io/select-syntax
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/select-syntax#bkmrk-order-term

Property Value Req Default

fetch "follows" ?

user user specifier current user

count boolean false

FETCH KEYS
Fetches all keys for a single user.

Property Value Req Default

action "fetch" ?

fetch "keys" ?

user user specifier current user

count boolean false

FETCH NOTIFICATIONS
Fetches notifications for a single user.

Property Value Req Default

action "fetch" ?

fetch "keys" ?

user user specifier current user

type notification type

seen boolean

Notifications will always be returned ordered by time, descending.

If type is provided, only notifications of the same type will be returned.

If seen is true , only seen notifications will be returned. If seen is false , only unseen notifications will be
returned.

FETCH POSTS
Fetches wall posts.

Property Value Req Default

fetch "posts" ?

wall wall specifier all walls

following boolean false

threads boolean false

https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-wall

Property Value Req Default

post post ID

children boolean false

records boolean false

FETCH PREFS
Fetches preferences for a single user.

Property Value Req Default

action "fetch" ?

fetch "prefs" ?

user user specifier current user

FETCH PREF DEFS
Fetches server preference definitions.

Property Value Req Default

action "fetch" ?

fetch "pref_defs" ?

FETCH USER SUBSCRIPTIONS
Fetches subscriptions for a single user.

Property Value Req Default

action "fetch" ?

fetch "user_subscriptions" ?

user user specifier current user

FETCH TASKS
Fetches task information.

Property Value Req Default

action "fetch" ?

fetch "tasks" ?

from task ID

user user specifier

text string

where expression

https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/expression-syntax

Property Value Req Default

order array of order terms recent first

limit integer 1,000 (see below)

offset integer

count boolean false

FETCH TEAM SUBSCRIPTIONS
Fetches subscriptions for a single team.

Property Value Req Default

action "fetch" ?

fetch "user_subscriptions" ?

team team specifier ?

FETCH THREADS
Fetches all task threads.

Property Value Required Default

action "fetch" ?

fetch "threads" ?

FETCH USERS
Fetches user information.

Property Value Req Default

action "fetch" ?

fetch "users" ?

users users specifier all users

order array of order terms recent first

limit integer 1,000 (see below)

offset integer

DOWNLOAD
The download action generates a signed URL to download a file stored in the XINA system. Note that this does
not actually perform the download; the returned URL can be used outside the XINA API to download the file.

DOWNLOAD RECORD

https://wiki.xina.io/select-syntax#bkmrk-order-term
https://wiki.xina.io/specifier-syntax#bkmrk-team
https://wiki.xina.io/specifier-syntax#bkmrk-users
https://wiki.xina.io/select-syntax#bkmrk-order-term

Generates a signed URL for a record file.

Property Value Req Default

action "download" ?

download "record" ?

database database specifier ?

record record specifier ?

version integer most recent

DOWNLOAD POST
Generates a signed URL for a post file.

Property Value Required Default

action "download" ?

download "post" ?

post post ID ?

Write Actions

INSERT
The INSERT action inserts one or more records into a XINA database.

By default, the action will fail if any records being inserted have duplicate key values already in the database. If a
different on_duplicate property is set, duplicate records will be updated according to the rules in the table. Only
fields explicitly set in the INSERT will be changed. This is analogous to an INSERT ... ON DUPLICATE KEY UPDATE
MySQL query.

Property Value Req Default

action "insert" ?

database database specifier ?

records records data ?

on_duplicate "fail" or "update" "fail"

fail_no_op boolean false

Examples

Given a starting database containing key field k , fields f1 , f2 , and f3 , with tags enabled, containing the
following two records:

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/select-syntax#bkmrk-record
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/data-syntax#bkmrk-records

k f1 f2 f3 tags

a 1 2 3 t1

b 1 2 3 t1

And inserting records:

on_duplicate: "fail"

Action fails due to duplicate key value "a" . No change occurs.

on_duplicate: "update"

Record with key value "a" is updated, and record with key value "c" is inserted. Note that field f3 of "a" is
unaffected because no inserted records specified an explicit value for f3 .

k f1 f2 f3 tags

a 4 null 3 t1, t2

b 1 2 3 t1

c 1 null null t2

REPLACE
The REPLACE action inserts one or more records into a XINA database and overwrites any existing records
with duplicate keys.

Property Value Req Default

action "replace" ?

database database specifier ?

records records data ?

on_duplicate "update" , "delete" , or
"trash" (if trash enabled for

database)

"update"

fail_no_op boolean false

Examples

Given a starting database containing key field k , fields f1 , f2 , and f3 , with tags enabled, containing the
following two records:

[
 { "k": "a", "f1": 4, "f2": null, "tags": ["t2"] },
 { "k": "c", "f1": 1, "f2": null, "tags": ["t2"] }
]

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/data-syntax#bkmrk-records

k f1 f2 f3 tags

a 1 2 3 t1

b 1 2 3 t1

And replacing records:

on_duplicate: "update"

Record with key value "a" is updated, and record with key value "c" is inserted. Note that f3 of "a" is now
null and t1 is removed because all fields are overridden by the incoming record.

k f1 f2 f3 tags

a 4 null null t2

b 1 2 3 t1

c 1 null null t2

on_duplicate: "trash" or "delete"

Existing record with key value "a" is deleted (or trashed), and new records "a" and "c" are inserted.

k f1 f2 f3 tags

b 1 2 3 t1

a 4 null null t2

c 1 null null t2

If "trash" is used, the trash table now contains the original "a" record.

k f1 f2 f3 tags

a 1 2 3 t1

SET
The SET action sets a database to contain the provided, and only the provided, records. Other records already
present in the database are removed (either trashed or deleted, depending on the provided configuration).

Property Value Req Default

action "set" ?

[
 { "k": "a", "f1": 4, "f2": null, "tags": ["t2"] },
 { "k": "c", "f1": 1, "f2": null, "tags": ["t2"] }
]

Property Value Req Default

database database specifier ?

records records data ?

on_duplicate "update" , "delete" , or
"trash" (if trash enabled for

database)

"update"

on_remove "delete" or "trash" (if trash
enabled for database)

"trash" if enabled, "delete"
otherwise

fail_no_op boolean false

Examples

Given a starting database containing key field k , fields f1 , f2 , and f3 , with tags enabled, containing the
following two records:

k f1 f2 f3 tags

a 1 2 3 t1

b 1 2 3 t1

And setting records:

on_duplicate: "update"

Record "a" is updated, record "c" is inserted, and record "b" is deleted (or trashed, depending on on_remove
). Note that f3 of "a" is now null and t1 is removed because all fields are overridden by the incoming record.

k f1 f2 f3 tags

a 4 null null t2

c 1 null null t2

on_duplicate: "trash" or "delete"

All existing records are deleted (or trashed, depending on on_remove), and new records "a" and "c" are
inserted.

k f1 f2 f3 tags

a 4 null null t2

c 1 null null t2

[
 { "k": "a", "f1": 4, "f2": null, "tags": ["t2"] },
 { "k": "c", "f1": 1, "f2": null, "tags": ["t2"] }
]

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/data-syntax#bkmrk-records

UPDATE
The UPDATE action updates the values of one or more fields and/or attached files of one or more records in a
single database.

Property Value Req Default

action "update" ?

database database specifier ?

records records specifier ?

fields jsonobject map of fields to
values to update (see below)

expressions jsonobject map of fields to
expressions to update (see
below)

file string object ID of file to update
(see below)

fail_no_op boolean false

The fields and expressions properties are JSON objects, where each key is interpretted as a field specifier in
the context of the current database. For the fields property, each value is interpretted as a literal JSON value for

the type of the specified field. For the expressions property, each value is interpretted as an expression, with the
evaluated result of the expression stored with the record. These are provided separately because expressions
would otherwise not be distinguishable from JSON object value literals.

The file property may be provided for databases with the file feature enabled. When the file is updated,
associated file record attributes (file_size , file_type , etc) will be updated automatically from the new file.

If a single field is referenced more than once across the fields and expressions object, the action will fail, as the
result would be ambiguous.

By default, if no records are found matching the records specifier, or no values are provided for fields ,
expressions , and file , the action will complete successfully without any changes occuring. If fail_no_op is true ,

the action will fail. Note, however, that fail_no_op will only detect these specific no-op conditions; it is possible
that no changes will occur if provided update(s) do not actually change any fields of matched record(s).

DELETE
The DELETE action deletes one or more records from a database.

Note that deleted records and all associated data are permanently deleted and cannot be restored.

This action requires the DELETE database privilege.

This documentation applies to XINA 9.2 and above.

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/api-syntax-data.md#records
https://wiki.xina.io/specifier-syntax#bkmrk-field
https://wiki.xina.io/expression-syntax

Property Value Req Default

action "delete" ?

database database ?

records records ?

fail_no_op boolean false

TRASH
The TRASH action moves one or more records into the trash table of a database. This is only available in
databases with the trash feature enabled, otherwise the action will fail.

This action requires the TRASH database privilege.

Property Value Req Default

action "trash" ?

database database ?

records records ?

fail_no_op boolean false

RESTORE
The RESTORE action moves one or more records from the trash table of a database into the record table. This is
only available in databases with the trash feature enabled, otherwise the action will fail.

If any records being restored have duplicate keys as other records currently in the database the action will fail.

This action requires the TRASH database privilege.

Property Value Req Default

action "restore" ?

database database ?

records records ?

fail_no_op boolean false

DISPOSE
The DISPOSE action deletes one or more records from the trash table of a database. This is only available in
databases with the trash feature enabled, otherwise the action will fail.

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records

Note that disposed records and all associated data are permanently deleted and cannot be restored.

This action requires the DELETE database privilege.

Property Value Req Default

action "dispose" ?

database database ?

records records ?

fail_no_op boolean false

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#records

Admin Actions
Administrative actions create, modify, or delete XINA data structures, perform user management, or other system
functions.

Schema Actions

SCHEMA
Returns the complete environment schema as a JSON object.

Property Value Required Default

action "schema" yes

Example

The server will return a JSON object:

CREATE
The CREATE action is used to create new groups, databases, teams, and users.

CREATE GROUP
Creates a new group.

Property Value Required Default

action "create" yes

create "group" yes

group group definition yes

{
 "action" : "schema"
}

{
 "groups" : [...]
}

https://wiki.xina.io/schema-syntax#bkmrk-group

Property Value Required Default

parent group specifier no

teams group teams association (see
below)

no

If a parent group is provided, the created group will be a child of the parent; otherwise the group will be a root
level group.

The teams property is used to associate the group with one or more teams on creation. This may either be a
JSON array of team specifier(s), and the group will be added to those teams with the default group privileges as
specified by each team, or may be a JSON object, with each key interpretted as a team specifier, and each value
containing a JSON object of group privilege(s) to boolean values, overriding the default team privileges.

CREATE DATABASE
Creates a new database.

Property Value Required Default

action "create" yes

create "database" yes

database database definition yes

parent group specifier yes

teams database teams association
(see below)

no

The teams property is used to associate the database with one or more teams on creation. This may either be a
JSON array of team specifier(s), and the database will be added to those teams with the default database
privileges as specified by each team, or may be a JSON object, with each key interpretted as a team specifier,
and each value containing a JSON object of database privilege(s) to boolean values, overriding the default team
privileges.

CREATE TEAM
Creates a new team.

Property Value Required Default

action "create" yes

create "team" yes

team team definition yes

CREATE USER
Creates a new user.

Property Value Required Default

action "create" yes

https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/schema-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/schema-syntax#bkmrk-team

Property Value Required Default

create "user" yes

user user definition yes

ALTER
The ALTER action is used to edit group, database, field, team, or user properties.

ALTER GROUP SET
Alters one or more group parameters. Requires the alter privilege on the specified group.

Property Value Required Default

action "alter" yes

alter "group" yes

op "set" yes

group group specifier yes

set JSON object map of
parameter(s) to value(s)

yes

ALTER GROUP OBJECTS
Inserts, updates, or deletes group objects. Requires the alter privilege on the specified group.

Property Value Required Default

action "alter" yes

alter "group" yes

op "objects" yes

group group specifier yes

objects JSON object map of key(s) to
object value(s)

yes

Any properties in the objects JSON object with a null value will be deleted, if they exist in the group objects.

ALTER GROUP FILES
Inserts, updates, or deletes group files. Requires the alter privilege on the specified group.

Property Value Required Default

action "alter" yes

alter "group" yes

op "files" yes

https://wiki.xina.io/schema-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/specifier-syntax#bkmrk-group

Property Value Required Default

group group specifier yes

files JSON object map of key(s) to
object ID(s)

yes

Any properties in the files JSON object with a null value will be deleted, if they exist in the group files.

ALTER DATABASE SET
Alters one or more database parameters. Requires the alter privilege on the specified database.

Property Value Required Default

action "alter" yes

alter "database" yes

op "set" yes

database database specifier yes

set JSON object map of
parameter(s) to value(s)

yes

ALTER DATABASE OBJECTS
Inserts, updates, or deletes database objects.

Property Value Required Default

action "alter" yes

alter "database" yes

op "objects" yes

database database specifier yes

objects JSON object map of key(s) to
object value(s)

yes

Any properties in the objects JSON object with a null value will be deleted, if they exist in the database objects.

ALTER DATABASE FILES
Inserts, updates, or deletes database files. Requires the alter privilege on the specified database.

Property Value Required Default

action "alter" yes

alter "database" yes

op "files" yes

database database specifier yes

files JSON object map of key(s) to
object ID(s)

yes

https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-database

Any properties in the files JSON object with a null value will be deleted, if they exist in the database files.

ALTER DATABASE ADD FIELDS
Adds one or more fields to an existing database. Requires the alter privilege on the specified database.

This operation modifies the database table(s) and may take several hours for very large databases.

Property Value Required Default

action "alter" yes

alter "database" yes

op "add_fields" yes

database database specifier yes

fields JSON array of field definitions yes

first boolean no false

after field specifier no

The action will fail if any of the new fields have the same name or label as eachother or any existing field in the
database.

By default, new fields are added at the end of the existing fields. If first is true, new fields will be added at the
front of the existing fields. If after is provided, new fields will be added immediately after the specified field, and
before any following fields. If both first is true and after is provided, the action will fail.

ALTER DATABASE DROP FIELDS
Drops one or more fields from an existing database. Requires the alter privilege on the specified database.

This operation modifies the database table(s) and may take several hours for very large databases.

Property Value Required Default

action "alter" yes

alter "database" yes

op "drop_fields" yes

database database specifier yes

fields fields specifier yes

The action will fail if any of the specified fields is a key field, or if the action would drop all fields from a database.

ALTER DATABASE ORDER FIELDS
Specifies ordering of one or more fields in a database. Requires the alter privilege on the specified database.

This operation does not modify the database table(s), only the field order as indicated by the XINA schema.

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/schema-syntax#bkmrk-field
https://wiki.xina.io/specifier-syntax#bkmrk-field
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-fields

Property Value Required Default

action "alter" yes

alter "database" yes

op "order_fields" yes

database database specifier yes

fields JSON array of field specifiers yes

after field specifier no

Fields will be ordered based on the order provided in the fields property, with any fields not specified maintaining
their original order after the specified set. If after is provided, the ordered block will start following that specified
field, with any non-specified fields before the after field maintaining their original order. If the after field is
included in the fields property, the action will fail.

Example

Given a database db with the fields order f1 , f2 , f3 , f4 , f5 , f6 , the action:

The resulting field order would be f4 , f2 , f1 , f3 , f5 , f6 .

Given the same intial setup and action but adding "after": "f3" , the resulting order would be: f1 , f3 , f4 , f2 ,
f5 , f6

ALTER DATABASE RESET PARTITIONS
Resets one or more partitions of a database record table. Requires the alter privilege on the specified database.

*This action permanently deletes all data in the specified partitions.

Unlike the DELETE action, this action immediately frees storage space in the underlying database system.

Property Value Required Default

action "alter" yes

alter "database" yes

op "reset_partitions" yes

database database specifier yes

{
 "action": "alter",
 "alter": "database",
 "database": "db",
 "op": "order_fields",
 "fields": ["f4", "f2"]
}

https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-field
https://wiki.xina.io/specifier-syntax#bkmrk-field
https://wiki.xina.io/data-actions#bkmrk-delete
https://wiki.xina.io/specifier-syntax#bkmrk-database

Property Value Required Default

partitions partitions specifier yes

ALTER FIELD SET
Alters one or more field parameters. Requires the alter privilege on the specified database.

Property Value Required Default

action "alter" yes

alter "field" yes

op "set" yes

database database specifier yes

field field specifier yes

set JSON object map of
parameter(s) to value(s)

yes

ALTER FIELD OBJECTS
Inserts, updates, or deletes field objects. Requires the alter privilege on the specified database.

Property Value Required Default

action "alter" yes

alter "field" yes

op "objects" yes

database database specifier yes

field field specifier yes

objects JSON object map of key(s) to
object value(s)

yes

Any properties in the objects JSON object with a null value will be deleted, if they exist in the field objects.

ALTER FIELD FILES
Inserts, updates, or deletes field files. Requires the alter privilege on the specified database.

Property Value Required Default

action "alter" yes

alter "field" yes

op "files" yes

database database specifier yes

field field specifier yes

https://wiki.xina.io/specifier-syntax#bkmrk-partitions
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-field
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-field
https://wiki.xina.io/specifier-syntax#bkmrk-database
https://wiki.xina.io/specifier-syntax#bkmrk-field

Property Value Required Default

files JSON object map of key(s) to
object ID(s)

yes

Any properties in the files JSON object with a null value will be deleted, if they exist in the field files.

ALTER USER SET
Alters one or more user parameters. Requires the super privilege to alter any user other than the current user.

Property Value Required Default

action "alter" yes

alter "user" yes

op "set" yes

user user specifier yes

set JSON object map of
parameter(s) to value(s)

yes

ALTER USER OBJECTS
Inserts, updates, or deletes user objects. Requires the super privilege to alter any user other than the current
user.

Property Value Required Default

action "alter" yes

alter "user" yes

op "objects" yes

user user specifier yes

objects JSON object map of key(s) to
object value(s)

yes

Any properties in the objects JSON object with a null value will be deleted, if they exist in the user objects.

ALTER USER FILES
Inserts, updates, or deletes user files. Requires the super privilege to alter any user other than the current user.

Property Value Required Default

action "alter" yes

alter "user" yes

op "files" yes

user user specifier yes

files JSON object map of key(s) to
object ID(s)

yes

https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user
https://wiki.xina.io/specifier-syntax#bkmrk-user

Any properties in the files JSON object with a null value will be deleted, if they exist in the user files.

DROP
Permanently delete teams, groups, databases, or users.

DROP GROUP
Drops a group. This action requires the super privilege.

This action permanently deletes all data in the specified group.

Property Value Required Default

action "drop" yes

drop "group" yes

group group specifier yes

children boolean no false

By default, if the specified group has any child groups or databases the action will fail. If children is true , all
child groups and databases will also be dropped.

DROP DATABASE
Drops a database. This action requires the super privilege.

This action permanently deletes all data in the specified database.

Property Value Required Default

action "drop" yes

drop "database" yes

database database specifier yes

children boolean no false

By default, if the specified database has any child databases the action will fail. If children is true , all child
databases will also be dropped.

DROP TEAM
Drops a team. This action requires the super privilege.

This action permanently deletes all data in the specified team.

Property Value Required Default

action "drop" yes

https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/specifier-syntax#bkmrk-database

Property Value Required Default

drop "team" yes

team team specifier yes

DROP USER
Drops a user. This action requires the super privilege.

This action permanently deletes all data associated with the specified user.

Property Value Required Default

action "drop" yes

drop "user" yes

user user specifier yes

JOIN
The JOIN action joins groups, databases, or users to one or more teams.

JOIN GROUPS

JOIN DATABASES

JOIN USERS

LEAVE
The LEAVE action removes groups, databases, or users from one or more teams.

LEAVE GROUPS

LEAVE DATABASES

LEAVE USERS

User Actions

https://wiki.xina.io/specifier-syntax#bkmrk-team
https://wiki.xina.io/specifier-syntax#bkmrk-user

GRANT

REVOKE

REQUEST
Request an arbitrary action to be performed by a user with required permissions.

RETRACT
Retract one or more user requests.

APPROVE

REJECT

System Functions

ACCESS
Used to acquire temporary access ID for websocket connection.

Example

Result

{
 "action" : "access"
}

{
 "access_id" : "<string>"
 "expires" : <unix_ms_timestamp>

}

Task and Thread Actions
Task actions provide features for running and interacting with asynchronous tasks managed by the XINA Run
application or AWS Lambda platform.

Task Reference
Task Actions may reference existing tasks by either their numeric Task ID or a JSON object with the following
format:

The ref_id is an arbitrary, optional value defined in the Task Definition when a task is created. The ref_id does
not have to be unique, implying the Task Action will be performed on all tasks that match the ref_id .

Task Actions

RUN
Run one or more asynchronous tasks.

Example

Task Definition

A task definition is used to define a new Task. It has a JSON object with the following format:

{
 "ref": [<ref_id assigned when creating the task>],
 "type": "ref"
}

{
 "action" : "run",
 "tasks" : [<task definition or reference>, ...]
}

{
 "name" : <string, task name>,
 "conf" : <JSON object, format depends on task>,
 "parent" : <long, parent task ID, optional>,

CONCLUDE
Explicitly conclude an asynchronous task. This is currently only used by AWS Lambda tasks, to notify the XINA
server that the task has concluded. If a value is provided for "delay" , the server will wait that many milliseconds
before concluding the task. This supports tasks that may have a longer cleanup or import period following the
immediate task completion.

Example

CANCEL
Cancel one or more asynchronous tasks.

Only non-concluded tasks may be canceled. If "ignore" is false, and any specified tasks have concluded, an error
will be thrown and no changes will occur. If "ignore" is true, all non-concluded specified tasks will be canceled,
and any concluded tasks will be ignored.

Example

 "thread" : <string, thread name, optional>,
 "auto" : <boolean, optional, default false>,
 "archive" : <boolean, optional, default false - if true, task workspace will not be deleted>,
 "open" : <boolean, optional, default false>,
 "desc" : <string, optional>,
 "priority" : <int, optional>,
 "timeout" : <int, ms, optional>,
 "ref_id" : <long, optional - arbitrary value for Task Referencing>
}

{
 "action" : "conclude",
 "task" : <task ID>,
 "delay" : <number, ms, 0-5000, optional, default 0>
}

{
 "action" : "cancel",
 "tasks" : [<task reference>, ...],
 "ignore" : <boolean, optional, default false>
}

CLEAN
Permanently delete one or more asynchronous task records and any associated files.

Only concluded tasks may be cleaned. If "ignore" is false , and any specified tasks have not concluded, an error
will be thrown and no changes will occur. If "ignore" is true , all concluded specified tasks will be cleaned, and
any non-concluded tasks will be ignored.

Example

DESTROY
Cancel and clean one or more asynchronous tasks. Unlike the CANCEL and CLEAN actions, this will apply to all
tasks regardless of the current task state.

Example

Thread Actions

PAUSE
Pause execution of one or more asynchronous task threads. This does not affect any task currently running in the
thread, but future tasks assigned to the thread will not run until the thread is resumed.

Example

{
 "action" : "clean",
 "tasks" : [<task reference>, ...],
 "ignore" : <boolean, optional, default false>
}

{
 "action" : "clean",
 "tasks" : [<task reference>, ...]
}

{
 "action" : "pause",
 "threads" : [<string, thread name>, ...]

RESUME
Resume execution of one or more asynchronous task threads. If "continue" is true and a continuable task is
currently locked on the thread, that task will be continued.

Example

}

{
 "action" : "pause",
 "threads" : [<string, thread name>, ...],
 "continue" : <boolean, optional, default false>

}

Struct Actions
Struct actions are complex data actions designed to be used with XINA Structs. Unlike most API actions, they
may involve complex multi-step operations, and are dependent on the structs configuration of groups and
databases.

Data Actions

STRUCT BUFFER IMPORT
Imports a buffer data file into a pipe.

Property Value Req Default

action "struct_buffer_import" ?

pipe pipe group specifier ?

file binary object ?

format string ?

conf jsonobject

When a data set is imported the XINA server will run the following steps:

For each row:
validate time and value
process mnemonic

If mnemonic ID
If found in definitions database:

If mnemonic is deprecated, throw error
Else, use mnemonic for row

Else, throw error due to unrecognized ID
Else, parse name and optional unit

If name match found:
If unit is provided and does not match, throw error
If mnemonic is deprecated, throw error
Else, use mnemonic for row

Else, mnemonic is new, create new temporary mnemonic definition based on
provided information

If any rows contain same mnemonic and time, throw error
Check for time overlap in database

If found
If on_overlap = fail , throw error
Else If on_overlap = delete , delete all data from database in time range of imported data
Else (on_overlap = ignore), do nothing

If new mnemonic definitions created, insert into mnemonic definition database
Insert data into mnemonic database

https://wiki.xina.io/structured-data-standards
https://wiki.xina.io/books/structured-data-standards/page/structs-data-format
https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/binary-objects

STRUCT MN ALIAS
Adds one or more aliases of name/unit pairs to a single existing mnemonic.

Property Value

action "struct_mn_alias"

database mnemonic definition database specifier

mn mnemonic ID

aliases string[] , name/unit pair alias(es) for mnemonic

STRUCT MN EDIT
Edits one or more properties of a single existing mnemonic.

Property Value Required

action "struct_mn_edit" ?

database mnemonic definition database specifier ?

mn mnemonic ID ?

name string , new name/unit pair for mnemonic

state string

STRUCT MN MERGE
Merges one or more existing mnemonics into a single existing mnemonic.

STRUCT EVENT
Performs context-aware event operations.

Unlike typical record operations, these actions support event definition lookup and creation. Event records or
updates may specify a "name" property, as if it were a database field. This will be used to lookup a
corresponding event ID from the event definitions associated with the database, and create a new definition with
the name if one is not found. Alternatively, the "name" may reference an event definition by external ID, by
starting with the $ character.

If an event specifies both a "name" and "e_id" , the action will fail, as the outcome is ambiguous. If the "name"
property value is numeric or numeric text, it will interpretted as a direct event ID reference (as if it had been
provided as "e_id").

"e_id" values are validated against existing event definitions, and the action will fail if the event ID is not found.

STRUCT EVENT INSERT
Inserts one or more events into a single event database.

Property Value Req Default

action "struct_event" ?

op "insert" ?

database event database ?

events event records ?

If the event database has an associated event change database, the event change database will be checked for
any update records, and the changes will be applied to the incoming events before they are inserted.

If any inserted UEIDs are already present in the database, the action will fail.

STRUCT EVENT CLOSE
Closes one or more open interval event(s).

Property Value Req Default

action "struct_event" ?

op "close" ?

database event database ?

t instant(us) closing time now

events events specifier ?

fields field value map

The closing time is specified by the t property.

The events property is an extension of the standard records specifier, but may include UEID(s) as strings. Only
currently open intervals in the specified database will be affected.

If the fields property is provided, updates the value(s) of the specified field(s) in the map for all events being
closed.

STRUCT EVENT UPDATE
Updates one or more events.

Property Value Req Default

action "struct_event" ?

op "update" ?

database event database ?

t instant(us) update time now

Property Value Req Default

events events specifier

fields field(s) to update ?

If the event database is a child of a pipe, an event change record is inserted in the associated event change
database for each event UEID matching the specifier. Additionally, if any updated fields are not configured to
permit updating, the action will fail.

STRUCT EVENT CLEAR

Schema Actions

STRUCT CREATE
The STRUCT CREATE action is used to create a variety of XINA Structs compatible schema elements.

STRUCT CREATE PROJECT
Creates a structs project group.

Property Value Req Default

action "struct_create" ?

create "project" ?

parent group specifier

name string ?

label string name

desc string label

group_teams team group privilege map

database_teams team database privilege map

If a parent group is specified, it may not include a structs definition (since project groups must be at the top level
of a struct heirarchy). The name (and label , if provided) must not be in use by any group siblings, or the action
will fail.

STRUCT CREATE CATEGORY
Creates a structs category group.

Property Value Req Default

action "struct_create" ?

create "category" ?

https://wiki.xina.io/specifier-syntax#bkmrk-group

Property Value Req Default

parent group specifier ?

name string ?

label string name

desc string label

group_teams team group privilege map

database_teams team database privilege map

The parent group must be either a project group or category group, or the action will fail. The name (and label ,
if provided) must not be in use by any group siblings, or the action will fail.

STRUCT CREATE MODEL
Creates a structs model group.

Property Value Req Default

action "struct_create" ?

create "model" ?

parent group specifier ?

name string ?

label string name

desc string label

event boolean false

eventf boolean false

eventfs boolean false

group_teams team group privilege map

database_teams team database privilege map

The parent group must be either a project group or category group, or the action will fail. The name (and label ,
if provided) must not be in use by any group siblings, or the action will fail.

STRUCT CREATE PIPE
Creates a struct pipe group.

Property Value Required Default

action "struct_create" ?

create "pipe" ?

model group specifier ?

name string ?

label string name

https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/specifier-syntax#bkmrk-group

Property Value Required Default

desc string label

group_teams team group privilege map

database_teams team database privilege map

partition boolean or {"from": <start
year>, "to": <end year>}

false

See the pipe definition for other
supported properties

The parent group must be either a project group or category group, or the action will fail. The name (and label ,
if provided) must not be in use by any group siblings, or the action will fail.

STRUCT CREATE DEF
Creates a structs definitions group, with associated databases.

Property Value Req Default

action "struct_create" ?

create "def" ?

parent group specifier ?

The parent group must be either a project, category, or model group, or the action will fail.

STRUCT CREATE EVENT
Creates a new structs event database.

Property Value Req Default

action "struct_create" ?

create "event" ?

group group specifier ?

type "none" , "file" , or "files" "none"

name string "event" , "eventf" , or
"eventfs"

label string name

desc string label

singular string "event"

plural string singular s

conf JSON object

fields array of field definitions

teams team database privilege map

https://wiki.xina.io/link/170#bkmrk-conf-parameters
https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/schema-syntax#bkmrk-field

STRUCT CREATE NOTEBOOK
Creates a new structs notebook database.

Property Value Req Default

action "struct_create" ?

create "notebook" ?

parent group specifier ?

name string ?

label string name

desc string label

fields array of field definitions

teams team database privilege map

https://wiki.xina.io/specifier-syntax#bkmrk-group
https://wiki.xina.io/schema-syntax#bkmrk-field

Specifier Syntax
Specifiers are objects which specify schema or data elements.

In general a specifier is an object with a type property indicating the type of the specifier. Some specifiers
provide a shorthand version by substituting a different JSON data type.

Common
There are several common specifiers used by multiple components.

All
Specifies all elements in the current context (for example, as a records specifier all would include all records in
the selected database).

Property Value

type "all"

Example

ID
Specifies an element by numeric ID. The value is provided directly as a JSON number.

Example (JSON number)

Name
Specifies an element by name. The value is provided directly as a JSON string.

Example (JSON string)

{ "type": "all" }

123

"foo"

Where
Specifies element(s) meeting a condition provided by an expression.

The source against which the expression is used depends on the context, but in general can be represented as

where source is the table containing the element.

Property Value

type "where"

where expression

Array
Specifies elements using an array of singular specifiers. The value is provided directly as a JSON array.

The types of the individual specifiers depend on the element, but in general unless otherwise noted all singular
specifier types for the element may be used. Specifier types may also be intermingled.

Example (JSON array)

Schema Elements

Groups
Specifies one or more groups. Group specifiers are also valid groups specifiers.

All

Array

Group
Specifies a single group.

ID

Name

SELECT [elements] FROM [source] WHERE [expression]

[123, "foo", {"type": "where", "where", "..."}]

https://wiki.xina.io/expression-syntax
https://wiki.xina.io/expression-syntax

Databases
Specifies one or more databases. Database specifiers are also valid databases specifiers.

All

Array

Database
Specifies a single database.

ID

Name

Fields
Specifies one or more fields. Field specifiers are also valid fields specifiers.

All

Array

Field
Specifies a single field.

ID

Name

Walls
Specifies one or more walls. Wall specifiers are also valid walls specifiers.

Array

Wall
Specifies a single wall.

Group Wall
Specifies the wall of single group.

Property Value

type "group"

group group specifier

Example

Database Wall
Specifies the wall of single database.

Property Value

type "database"

database database specifier

Example

Record Wall
Specifies the wall of single record.

Property Value

type "record"

database database specifier

record record specifier

Example

{
 "type" : "group",
 "group" : "foo"
}

{
 "type" : "database",
 "database" : "foo"
}

{
 "type" : "database",
 "database" : "foo",
 "record" : 123

User Wall
Specifies the wall of single user.

Property Value

type "user"

user user specifier

Example

Data Elements

Records
Specifies a set of records in a single database. Record specifiers are also valid records specifiers.

All

Array

Where

Record
Specifies a single record in a database.

ID

Key
Specifies a single record by a set of key value(s).

{ "type" : "key", "key" : <[[XINA API :: Data Syntax#Fields|fields]]> }

Each key must specify a non-null value for each key field of the database.

}

{
 "type" : "user",
 "user" : "foo"
}

Posts
Specifies a set of posts. Post specifiers are also valid posts specifiers.

All
Array
Where

Post
Specifies a single post.

ID

Administrative

Users
Specifies a set of users. User specifiers are also valid users specifiers.

All
Array
Where

User
Specifies a single user. Note that name in this case refers to the username, not the user's full name.

ID
Name

Group Privileges
Specifies a set of group privileges.

All
Array

Group Privilege

Specifies a single group privilege as a JSON string. The valid group privileges are:

"select"
"post"
"reply"
"alter"
"grant"

Database Privileges
Specifies a set of database privileges.

All
Array

Database Privilege
Specifies a single database privilege as a JSON string. The valid database privileges are:

"select"
"post"
"reply"
"update"
"insert"
"trash"
"delete"
"lock"
"alter"
"grant"

Record Syntax
JSON Format
A single record may be encoded as a JSON object:

Property Value

<field name / label> field type appropriate value / null

"expressions" JSON object mapping field name/label to expression

"file" binary object (if database has file enabled)

"tags" JSON array of string(s) (if database has tag enabled)

The "expressions" property allows field values to be specified by expression, rather than explicit value. Between
the base object and "expressions" object, field may only have a single value provided, or an error will be thrown.

Multiple records may be encoded as a JSON array of JSON objects in this format.

DSV Format
Record data may be provided in a delimiter separated values format. In this case the record data itself is

contained in a binary object.

Property Value

"type" "dsv" , "csv" , or "tsv"

"file" binary object

"delimiter" string (required for "dsv")

"quote" string (optional)

The "csv" and "tsv" types specify default delimiters of comma (,) and tab (\t), respectively.

Example

{
 "records": {
 "type": "dsv",
 "file" : "<object ID>",
 "delimit": ";"
 }
}

https://wiki.xina.io/expression-syntax
https://wiki.xina.io/binary-objects
https://wiki.xina.io/binary-objects
https://wiki.xina.io/binary-objects

The format of the separated values file is largely based on the RFC 4180 standard. The specific requirements
are:

lines must end with LF (\n) or CR LF (\r\n)
line breaks cannot be used in values
the default quote character is " (double quotes)
any field may be quoted by the quote character
any field containing the delimiter must be quoted
a quote character in a quoted value must be represented by two quote characters
the first row must contain the names of each field
blank lines with no data are ignored

http://tools.ietf.org/html/rfc4180

Expression Syntax
XINA expressions translate to MySQL expressions, which are evaluated as a query is executed.

All expressions have a standard form as a JSON object, with a type property specifying the expression type,
and additional properties as needed by that expression type.

Additionally, certain expression types may be represented using a short form, which is formatted as a JSON
object with a single property prefixed with the $ character.

Literals
Literal expressions represent a single, discrete value.

Null
The MySQL NULL value. May also be specified with the JSON null value.

Property Value

type "null"

Example (as object)

Example (as JSON literal)

Number
A numeric literal value. The value may be provided as a native JSON number, or encoded as a string. May also
be provided directly as a JSON number value.

Property Value

type "number"

value number or string

Example (as object)

{ "type": "null" }

null

Example (as JSON literal)

String
A string literal value. May also be provided directly as a JSON string .

Property Value

type "string"

value string

Example (as object)

Example (as JSON literal)

Datetime
A datetime literal value. Interpreted by the database as Unix time in milliseconds.

Property Value

type "datetime" or "dt"

value integer or string

If the value provided is an integer it must be the number of milliseconds since the Unix epoch. If the value is a
string it must be encoded according to the following syntax, taken from the ISO8601 standard:

{
 "type" : "number",
 "value" : 123
}

123

{
 "type" : "string",
 "value" : "foo"
}

"foo"

If the offset is not provided the timezone will be assumed to be UTC.

Supports shorthand syntax with the $dt property.

Property Value

$dt integer or string

Local Datetime
A local datetime literal value.

Property Value

type "localdatetime" or "ldt"

value string

The value must be encoded according to the same syntax as the datetime literal, except with the offset omitted.

Supports shorthand syntax with the $ldt property.

Property Value

$ldt string

Local Date
A local date literal value.

Property Value

type "localdate" or "ld"

value string

The value must be encoded according to the same syntax as the date-element in the datetime literal.

date-opt-time = date-element ['T' [time-element] [offset]]
date-element = std-date-element | ord-date-element | week-date-element
std-date-element = yyyy ['-' MM ['-' dd]]
ord-date-element = yyyy ['-' DDD]
week-date-element = xxxx '-W' ww ['-' e]
time-element = HH [minute-element] | [fraction]
minute-element = ':' mm [second-element] | [fraction]
second-element = ':' ss [fraction]
fraction = ('.' | ',') digit [digit] [digit]
offset = 'Z' | (('+' | '-') HH [':' mm [':' ss [('.' | ',') SSS]]])

Supports shorthand syntax with the $ld property.

Property Value

$ld string

Local Time
A local time literal value.

Property Value

type "localtime" or "lt"

value string

The value must be encoded according to the same syntax as the time-element in the datetime literal.

Supports shorthand syntax with the $lt property.

Property Value

$lt string

Columns
Column expressions specify a column of a table. Although each column type has a separate full syntax, there is
a shorthand syntax with the $col property, which infers the column type based on the content.

Property Value

$col string column

Examples

user.email : email parameter of the user system table
a.b.record_id : record_id attribute of the record table of database b in group a
a.b@trash.record_id : record_id attribute of the trash table of database b in group a
a.b.c : c field of the record table of database b in group a

System Parameter Column

column = system-column | database-column
system-column = system-table-name '.' system-parameter-name
database-column = database-path ['@' database-table-name] '.' (parameter-name | attribute-name | field-name
| blob-attribute)
blob-attribute = blob-name ':' blob-attribute-name

Specifies a column of a system table.

Property Value

type "column"

table string

column string

Database Parameter Column
Specifies a parameter column of a database table.

Property Value

type "column"

database database specifier

table string table name

column string parameter name

Database Attribute Column
Specifies an attribute column of a database table.

Property Value

type "column"

database database specifier

table string table name

column string attribute name

Database Field Column
Specifies a field column of a database table.

Property Value

type "column"

database database specifier

table string table name

column field specifier

https://wiki.xina.io/api-syntax-spec.md#database
https://wiki.xina.io/api-syntax-spec.md#database
https://wiki.xina.io/api-syntax-spec.md#database
https://wiki.xina.io/api-syntax-spec.md#field

Alias
Although the alias is not technically a column, it can refer directly by name to any column in the source, or to an
alias of a result column.

Property Value

type "alias"

value string

Supports shorthand syntax with the $alias property.

Property Value

$alias string

Evaluations
Evaluations are expressions evaluated by MySQL.

Between
Returns true if the expression e is between min and max .

Property Value

type "between"

e expression

min expression

max expression

Supports shorthand syntax with the $between property. Takes a JSON array of exactly 3 expressions, in the
order e , min , and max .

Property Value

$between array of three expressions

Binary
Binary operation, evaluated as e1 op e2 .

https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md

Property Value

type "binary"

op string

e1 expression

e2 expression

Valid binary operators are as follows:

Operator Description

and logical AND

or logical OR

= equal

!= not equal

> greater

>= greater or equal

< less

<= less or equal

is test against NULL

like simple pattern matching, see here

regexp advanced pattern matching, see here

+ addition

- subtraction

* multiplication

/ division

% modulus

& bit-wise AND

⏐ bit-wise OR

<< left shift

>> right shift

Supports shorthand syntax with any operator by prefixing it with $. Takes a JSON array of two or more
expressions. If more than two expressions are provided, behavior depends on the operator type. Logic and math
operators perform each binary operation in order of expressions. For example:

{"$and": [true, true, false]} = (true and true) and false = false
{"$/": [12, 3, 2, 2]} = ((12 / 3) / 2) / 2 = 1

Comparison operators perform a logical AND of the comparisons of the first expression to each additional
expression.

https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/regexp.html

{"$=": [0, 1, 2]} = (0 = 1) and (0 = 2) = false

Case
Case logic expression. If the base is provided, returns the then expression of the first case in which when =
base . Otherwise returns the first case in which when is true . If no case is satisfied returns else if it is

provided, or NULL otherwise.

Property Value

type "case"

base expression (optional)

cases array of case options

else expression (optional)

Case Option
Property Value

when expression

then expression

Collate
Performs the MySQL COLLATE function.

Property Value

type "collate"

e expression

collation string

Count Rows
Performs the MySQL COUNT(*) function.

Property Value

type "count_rows"

Example

https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md

Exists
Returns true if the enclosed SELECT returns at least one row.

Property Value

type "exists"

select select

Supports shorthand syntax with the $exists property.

Property Value

$exists select

Function
Performs a MySQL function. The number of arguments varies depending on the function.

Property Value

type "function"

function string

args array of expressions

Available functions are:

Name Args Aggregate Description

AVG 1 yes arithmetic average

AVG_DISTINCT 1 yes arithmetic average of distinct
values of argument

BIT_AND 1 yes bit-wise AND

BIT_OR 1 yes bit-wise OR

BIT_XOR 1 yes bit-wise XOR

CEIL 1 yes returns the smallest integer
value not less than the
argument

COUNT 1 yes returns the number of rows in
the which the argument is not
NULL

COUNT_DISTINCT n yes returns the number of distinct
value(s) of the arguments

{ "type": "count_rows" }

https://wiki.xina.io/api-syntax-sel.md
https://wiki.xina.io/api-syntax-sel.md
https://wiki.xina.io/api-syntax-ex.md

Name Args Aggregate Description

FLOOR 1 yes returns the largest integer value
not greater than the argument

MAX 1 yes returns the maximum value of
the argument

MIN 1 yes returns the minimum value of
the argument

POW 2 no

STDDEV_POP 1 yes returns the population standard
deviation of the argument

STDDEV_SAMP 1 yes returns the sample standard
deviation of the argument

SUM 1 yes returns the sum of the
argument

SUM_DISTINCT 1 yes returns the sum of the distinct
values of the argument

TRUNCATE 2 no

VAR_POP 1 yes returns the population variance
of the argument

VAR_SAMP 1 yes returns the sample variance of
the argument

Supports shorthand syntax by prefixing any function name with $$. For example, { "$$pow": [2, 3] } evaluates
to 8 .

In
Returns true if an expression is contained in a set of values. If an empty array is provided for values , will always
return false.

Property Value

type "in"

e expression

values array of expressions

Supports shorthand syntax with the $in property. Takes an array of a single expression (e), followed by either
an array of expression(s) (values) or a SELECT object.

Property Value

$in array of one expression, then either an array of expressions or a

select

In Select

https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-sel.md

Returns true if e is in the result of the select query.

Property Value

type "in_select"

e expression

select select

Supports shorthand syntax with the $in property (see above).

Select Expression
Returns the value of the first column in the first row of the result set of the query.

Property Value

type "select"

select select

Supports shorthand syntax with the $select property.

Property Value

$select select

Unary Expression
Unary operator expression, evaluated as op e .

Property Value

type "unary"

op string

e expression

Valid unary operators are:

Operator Description

not logical NOT

- negate

~ bit invert

Supports shorthand syntax with any operator by prefixing it with $. Takes a single expression as a value.

Property Value

https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-sel.md
https://wiki.xina.io/api-syntax-sel.md
https://wiki.xina.io/api-syntax-sel.md
https://wiki.xina.io/api-syntax-ex.md

$ op expression

https://wiki.xina.io/api-syntax-ex.md

Select Syntax
The SELECT syntax is essentially a JSON representation of the MySQL SELECT syntax. See the MySQL

documentation for more detailed information.

SELECT
The SELECT syntax is contained in a single JSON object.

Property Value Notes

distinct boolean , default false If true , only returns unique values

columns result columns If empty, returns all columns available from
source

from source Source being selected from

where expression Condition for rows, where expression
returns true

group array of expressions Used to group rows for aggregation
functions

having expression Like where , but can filter aggregation
results

order array of order terms Used to sort the results

limit expression Limit the number of rows returned

offset expression Offset of the start of the rows

Result Columns
Specifies the column(s) to select.

All
Specifies all columns from the source. This is the same as the MySQL SELECT * syntax. This is the default if no
value for the columns property is set.

Property Value

type "all"

Example

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/expression-syntax
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md

Array
Specifies column(s) as an array of result column objects. This is provided directly as a JSON array.

Example as JSON array:

Result Column
Specifies an expression and optional alias. The alias can be referenced in the where clause with an alias
expression.

Property Value

e expression

alias string (optional)

Source
A source is a SQL table (or virtual table) from which a SELECT statement loads data.

Table Source
A source from any table.

Property Value

type "table"

table string table

alias string (optional)

The table syntax is the same as the table portion of the column expression syntax

May also be provided directly as a JSON string (without the alias property).

{ "type": "all" }

[...]

table = system-table-name | database-table
database-table = database-path ['@' database-table-name]

https://wiki.xina.io/api-syntax-ex.md
https://wiki.xina.io/api-syntax-ex.md#columns

System Table Source

A source from a system table.

Property Value

type "table_system" or "ts"

table string table name

alias string (optional)

Database Table Source
A source from a database table.

Property Value

type "table_database" or "td"

database database specifier

table string table name

alias string (optional)

Join Source
A source derived from a SQL join of two sources.

Property Value

type "join"

op "join" , "left" , "left_outer" , "inner" , or "cross"

s1 left join source

s2 right join source

Select Source
Source from the result of a select statement.

Deprecated

https://wiki.xina.io/api-syntax-spec.md#database

Property Value

type "select"

select select

Order Term
Specifies an expression and optional order.

Property Value

e expression

order "asc" or "desc" (optional, default "asc"

https://wiki.xina.io/api-syntax-sel.md
https://wiki.xina.io/api-syntax-ex.md

Definitions Syntax

Group
Defines a XINA group.

Property Value

name string

desc string

Database
Defines a XINA database. The name and fields values are required, and at least one field must be provided. If
label is not provided it will be the same as name .

Property Value

name string

label string (optional)

format string (optional)

path string (optional)

desc string (optional)

dynamic boolean (optional, default false)

event boolean (optional, default false)

file boolean (optional, default false)

link boolean (optional, default false)

lock boolean (optional, default false)

log boolean (optional, default false)

notify boolean (optional, default false)

subscribe boolean (optional, default false)

tag boolean (optional, default false)

track boolean (optional, default false)

Under Construction

Property Value

trash boolean (optional, default false)

wall boolean (optional, default false)

objects object (optional)

files object (optional)

fields array of fields

blobs array of blobs (optional)

indexes array of string values (optional)

databases array of databases (optional)

Field
Defines a XINA database field. The name and type are required. If label is not provided it will be the same as
name .

Field Option
A value option for a field. Regardless of the field type the value here should be a string representation of the
actual value.

 {
 "name" : <string>,
 "label" : <string>, (optional)
 "type" : <string>,
 "format" : <string>, (optional)
 "meas" : <string>, (optional)
 "unit" : <string>, (optional)
 "desc" : <string>, (optional)
 "def" : <string>, (optional)
 "ref" : <string>, (optional)
 "key" : <boolean>, (optional, default false)
 "nul" : <boolean>, (optional, default false)
 "strict" : <boolean>, (optional, default false)
 "lock" : <boolean>, (optional, default false)
 "options" : [<[[#Field Option|field option]]>, ...] (optional)
 }

 {
 "value" : <string>,

Blob
Defines a XINA database blob. The name is required. If label is not provided it will be the same as name .

Index
Defines an index on one or more columns of a database record table.

 "desc" : <string> (optional)
 }

 {
 "name" : <string>,
 "label" : <string>, (optional)
 "desc" : <string>, (optional)
 "nul" : <boolean> (optional, default false)
 }

Action Index
ACCESS
Acquire temporary access ID for websocket connection.

ALTER
Edit schema or user properties.

APPROVE
Approve user requests.

CANCEL
Cancel one or more asynchronous tasks.

CLEAN
Delete one or more asynchronous task records and any associated files.

CONCLUDE
Explicitly conclude an asynchronous task.

CREATE
Create group, database, team, or user entities.

DELETE
Permanently delete one or more database records.

DESTROY
Cancel and clean one or more asynchronous tasks.

DISPOSE
Permanently delete one or more trashed database records.

DOWNLOAD
Acquire temporarly download links to one or more files.

DROP
Permanently delete a group, team, or database.

EDIT
Edit a wall post.

FETCH
Load a variety of data types in JSON friendly formats.

FOLLOW
Assign one or more walls to be followed by a user.

GRANT
Grant one or more users permissions on one or more groups or databases.

IF
Perform an action conditionally based on the result of a query.

INSERT
Insert one or more records into a database.

INSERT SELECT
Insert records into a database from an arbitrary query.

INVOKE
Invoke a synchronous AWS Lambda function.

JOIN
Join one or more users, groups, or databases to one or more teams.

KEY
Create or delete an API key for a user.

LEAVE
Remove one or more users, groups, or databases from one or more teams.

LINK
Create directional links from one or more records to one or more records.

LOAD
High performance record insertion using the MySQL LOAD DATA INFILE operation.

LOCK
Lock one or more records in a database.

MOVE
Rename an object in the general object store.

PAUSE
Pause execution of one or more asynchronous task threads.

POST
Send a post to a wall.

PREFER
Apply one or more preferences for a user.

PULL
Permanently delete a post from a wall.

REJECT
Deny a user request.

REPLACE
Insert one or more records into a database, replacing existing records with matching keys.

REPLACE SELECT
Insert records into a database from an arbitrary query, replacing existing records with matching keys.

REQUEST
Request an arbitrary action to be performed by a user with required permissions.

RESET
Resets a database to the initial state, permanently deleting all records.

RESTORE
Restores one or more trashed records to the active state.

RESUME
Resume execution of one or more asynchronous task threads.

RETRACT
Retract one or more user requests.

REVOKE
Revoke one or more permissions on one or more groups or databases from one or more users.

RUN
Run one or more asynchronous tasks.

SCHEMA
Returns the complete current group and database schema.

SELECT
Performs a SQL SELECT query.

SET
Inserts one or more records into a database, replacing all records already present in the database.

SIGN
Sign one or more records.

STORE
Add or remove data from the general object store.

STRUCT BUFFER DEPRECATE
Deprecates one or more mnemonic buffer files.

STRUCT BUFFER IMPORT
Import a single mnemonic buffer file.

STRUCT CREATE
Create struct schema elements.

https://wiki.xina.io/admin-actions#bkmrk-schema

STRUCT MN ALIAS
Adds one or more aliases to a struct mnemonic.

STRUCT MN EDIT
Edits system managed fields of a struct mnemonic.

STRUCT MN MERGE
Merges one or more struct mnemonics into a single mnemonic.

SUBSCRIBE
Subscribes one or more users to notifications from one or more walls.

TAG
Applies one or more tags to one or more records in a single database.

TEAMS
Returns the complete team schema.

TRASH
Trashes one or more records in a database.

UNFOLLOW
Remove one or more walls from being followed by one or more users.

UNLINK
Permanently delete links between records.

UNLOCK
Unlock one or more records in a database.

UNSIGN
Remove signature from a record.

UNSUBSCRIBE
Remove subscriptions from one or more walls for one or more users.

UNTAG
Remove one or more tags from one or more records in a single database.

UPDATE
Update the fields, blobs, or file of one or more records in a single database.

UPDATE EXPRESSION
Update the fields, blobs, or file of one or more records in a single database, supporting field values defined as
arbitrary expressions.

VERSION
Returns the current XINA version information.

VIEW
Marks tasks or notifications as viewed by a user.

WAIT
Waits a specified period of time and returns.

XDOWNLOAD
Generates a XINA Download utility file for set of file downloads.

